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Abstract 

We contrast three methods for measuring selection at sequential fitness components 
(here called the additive, changing variance, and independent methods). The 
independent method (Koenig and Albano, 1987; Conner, 1988) describes the 
relationship between a phenotypic character and one fitness component independent 
of other components. This method is appropriate when the question is whether or 
not a character has fitness consequences independent of selection at other stages. The 
additive (Arnold and Wade, 1984a) and changing variance (Kalisz, 1986; Koenig and 
Albano, 1987) methods measure selection via one component of fitness, taking into 
consideration constraints imposed by selection via earlier components in the sequence. 
These methods therefore more accurately track selection over a sequence of fitness 
components. Of these latter two methods, the changing variance method yields erratic 
results in simulation studies and is not recommended in its unmodified form. The 
additive method (equivalent to the changing variance method weighted as described 
in Wade and Kalisz [ 19891) explicitly partitions selection into additive components 
and is useful for measuring selection taking into account the constraints imposed by 
selection acting via prior fitness components. 

The methods often yield very different estimates of the relative degree to which 
the mean of a character is changed by selection acting via a particular component 
of fitness (the “strength” of selection). However, neither the additive nor independent 
method is inherently superior to the other; rather, these measures are complementary. 

Powerful techniques have recently been developed for quantifying selection 
(Lande and Arnold, 1983; Manly, 1985; Schluter, 1988; Crespi and Bookstein, 
1989). A method of partitioning directional selection, derived by Arnold and Wade 
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(1984~) is of particular interest to population biologists because it describes how 
selection acts via different components of fitness, also referred to as episodes of 
selection. This method allows researchers to use longitudinal data to identify which 
components of fitness are most important with respect to selection. Components of 
fitness are ordered and multiply to equal the total fitness measured. For example, 
lifespan (days alive), mating efficiency (mates/day) and success in fertilizing eggs 
(fertilizations/mate) multiply to equal the total number of fertilizations a male 
obtains during his lifetime. The number of fitness components examined is flexible 
and depends on the both the biology of the species and the data acquired by the 
researcher. 

In addition to the method described by Arnold and Wade (1984a), two alterna- 
tive procedures for measuring selection at sequential fitness components have been 
used in recent studies (Kalisz, 1986; Koenig and Albano, 1987; Conner, 1988). Here 
we compare the three methods and illustrate their differences with the goal of 
understanding how the values derived illuminate how selection works. Our results 
suggest that the method of choice will depend in part on the goal of the analysis 
and on whether one desires (1) a picture of selection constrained by changes in 
phenotypic variation or (2) to focus on the relationship between a character and a 
particular component of fitness. 

Because Arnold and Wade’s (1984~) method partitions selection that modifies the 
mean of a character, we restrict our discussion to directional selection and ignore 
stabilizing or disruptive selection, which modifies the variance in a character 
independent of the mean (Lande and Arnold 1983). We also do not discuss more 
recent techniques, such as the cubic-spline method of Schluter (1988), to visualize 
the form of selection. This alternative technique is useful for examining selection at 
particular stages but has not as yet been extended to sequential components of 
fitness. 

First we briefly discuss derivation of the methods. We then compare them using 
data from Howard’s (1979) classic study of male bullfrogs (Rana catesbeiuna) and 
simulations based on several hypothetical data sets. 

Definitions and methods 

The selection differential, s, measures the shift in the mean of a character due to 
selection (Falconer, 198 1). Selection differentials divided by character variance (P) 
yield selection gradients (/I), which measure the relative strength of selection 
(Lande, 1979; Lande and Arnold, 1983). Selection differentials are equal to the 
covariance between relative fitness (M’) and the phenotypic character (z) under 
consideration (Robertson, 1966). 

When fitness is divided into multiplicative components, the selection differential 
can be partitioned into components, sk (Arnold and Wade, 1984~). Values of sk 
measure the shift in the mean of a character due to selection acting via the kth 
component of fitness and are equal to the mean of the character after the action of 
all components up through component k minus the mean before component k. 
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When defined according to the equations given in Arnold and Wade (1984a, p. 
712) sk values are equal to the covariance between phenotypic value and the k th 
component of relative fitness. That is, 

Sk = COV(2, Wk). (1) 

All individuals are included in the calculations for each component, and conse- 
quently s, values are additive and sum to the total selection differential, S. 
Complete derivation of sk values is provided by Arnold and Wade (1984~). 

There are two types of selection differentials that can be calculated using Sk 
values. First is ljkr equal to the additive selection differential (sk) at episode k 
divided by the variance in the original distribution of the trait (PO), multiplied by 
N/[N - I]. (For clarity, we ignore the N/[N - l] term in the subsequent discussion.) 
That is, 

bk =sk/pO. (2) 

In the multivariate case, fik = P- ‘Sk, where P- 1 is the inverse of the phenotypic 
variance-covariance matrix before selection, Sk is the column vector of selection 
differentials at episode k, and jIk is the column vector of selection gradients at 
episode k. The multivariate technique separates selection acting directly on a 
character from selection acting indirectly through measured correlated characters 
(Lande and Arnold, 1983). 

As with s,, /Ik values are additive and sum to /ITotal, the total selection differential 
over m episodes. Hence, we refer to this derivation for selection gradients as the 
“additive” method. 

The second selection gradient that can be calculated from Sk values was men- 
tioned but not emphasized by Arnold and Wade (1984~). We call this selection 
gradient /?z, defined as the selection differential at the kth episode (Sk) divided by 
the variance in the character at the onset of episode k rather than the original 
variance in the character, PO. That is, 

Pk* =sklpk - I. (3) 

For the first episode, Pk ~ , = PO and fiz = Bk. However, for subsequent episodes, 

P: #BkT except for the unlikely case in which Pk _ I = PO. In the multivariate case, 
fi: = P,- ,-’ S,, where P,- ,-’ is the inverse of the phenotypic variance-covari- 
ante matrix before episode k (that is, weighted by cumulative fitness at episode 
k - 1) and j?z is the column vector of selection gradients at episode k. (Arnold and 
Wade [1984a, p. 7121 defined bz values using Pk. We have used Pk _ 1 because all 
other subscripts, k, both in their paper and here, refer to parameters up through 
rather than prior to episode k.) 

Because the fitness components multiply to lifetime fitness (by definition) and the 
character variance changes at each episode, flz values are not additive and do not 
sum to pTota,. /?z values are, however, readily converted to additive flk values by the 
weighting factor ak = P;’ P, _ , (Wade and Kalisz, 1989). We refer to Bc as the 
“changing variance” method of measuring selection gradients via sequential fitness 
components. 
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An alternative to using s, values to derive selection gradients is to define selection 
differentials as the shift in the mean of the character using only individuals 
effectively contributing to component k (Koenig and Albano, 1987; Conner, 1988). 
To calculate s;, we define relative fitness for individual j at component k, w; j, 
explicitly excluding individuals whose fitness at a prior component is zero. That is, 

where Wk.j is absolute fitness during episode k and N’ is the number of individuals 
for which W, _ , > 0. We then define s; as the covariance between relative fitness, 
w;, and the character, 

s; = Cov(z, WV;). (5) 

Note that this equation is identical to equation (l), above, except that individuals 
whose fitness at a prior episode is zero are excluded from the calculations. Values 
of s; do not sum to S because the reference population shifts following each episode 
as individuals with zero fitness for a given fitness component drop out of the 
calculations. 

Using s;, a third selection gradient, /I;, can be derived by dividing s; by the 
variance in the character among individuals for which W, ~ 1 > 0. Hence, 

Pi =s;1p;-,, (6) 

where Pi ~, is the variance in the character using only individuals whose fitness is 
greater than zero at the onset of component k (that is, W,_ 1 > 0). In the 
multivariate case, 8; = P; ~ , -’ S;, where Pi ~ , ~’ is the inverse of the phenotypic 
variance-covariance matrix including only individuals whose fitness is greater than 
zero at the onset of component k, fi; is the column vector of selection gradients, 
and S; is the column vector of selection differentials at component k. Analogous to 
s;, each element in the S; matrix is the covariance between the character value and 
relative fitness defined by the ratio W;,j/(Z W,,,/N’), and thus includes only those 
individuals for which W,- , > 0. 

/I; can also be derived directly by regression of relative fitness at each episode (~1; 
as defined in equation[4]) on the character. Therefore & is a true regression 
coefficient (Conner, 1988). However, the reference population explicitly changes at 
each episode because individuals with W, ~ , = 0 drop out of the calculations. 
Values of pi, like those of Bz, are not additive and do not sum to pTotal when 
components multiply to lifetime fitness. We refer to this as the “independent” 
method of partitioning selection gradients because /?; is not influenced by perfor- 
mance at other episodes other than by elimination of individuals whose fitness is 
zero. 

There are two noteworthy situations in which the various measures of selection 
discussed above are equivalent. First, because all individuals start with equal fitness 
in the first episode, s; = s,, Ph = P,, and consequently /I; = /I: = B,. These equali- 
ties do not hold in general for k > 1. However, s ; = sk for all k when fitness at each 
component is an all or none affair, that is, either W, = I or W, = 0. Similarly, when 
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W, = 1 or W, = 0, the weighted phenotypic variance prior to component k, Pk ~ ], 
equals P; I, the phenotypic variance for individuals with W, ~ , > 0. It follows that 
p: = p; when W, = 1 or W, = 0. Proof is beyond the scope of this paper, but can 
be confirmed by performing analyses using components which take on only these 
two values. An example of such data is provided by Kalisz ( 1986), whose episodes 
each represented survivorship to the next life-history stage. However, since such 
data are categorical rather than continuous, the appropriateness of using a regres- 
sion model to analyze them is questionable (Sokal and Rohlf, 1981, p. 454). 

Statistical testing of measures of selection can be accomplished by use of Wu’s 
(1986) weighted jackknife estimator (Mitchell-Olds and Shaw, 1987). A computer 
program, writted in Fortran, which calculates the three types of selection gradients 
and their confidence intervals for up to four characters and seven episodes of 
selection, is available from the authors on request. 

Results 

Selection on Male Bullfrogs 

Howard’s (1979) data on the relationship between size and fitness of male 
bullfrogs provide a useful comparison of the methods for calculating selection 
gradients. Howard measured fitness at three stages in the life cycle: number of 
mates, number of zygotes, and number of hatchlings. Episode 1 is number of mates, 
episode 2 is the number of zygotes per mate (fertility per mate), and episode 3 is 
hatchlings per zygote (hatching success of offspring survivorship). Multiplying these 
three components together yields the total number of hatchlings. The episodes cross 
generational boundaries, and therefore are not ideal insofar as selection may be 
confounded with inheritance. However, the episodes can be analyzed by the 
methods discussed here because they are sequential and multiplicative. 

Based on correlations with male body size, Howard (1979) concluded that larger 
males experience greater mating success, fertilize more eggs, and produce more 
hatchlings. Arnold and Wade ( 19846) reanalyzed Howard’s data and concluded, 
based on the additive method, that the majority of selection in male bullfrogs 
occurred via the first fitness component, mating success, and that no significant 
selection on male body size occurred via fertility per mate or hatching success. 

Table 1 presents a reanalysis of Howard’s (1979) data using the above three 
methods for calculating selection gradients. The additive method (fik), supports 
Arnold and Wade’s (1984b) conclusion that there is significant directional selection 
on body size only via the first fitness component, mating success. Selection acting 
via the second fitness component, fertility per mate, is not significant by any of the 
three methods. However, both the changing variance (Bt) and independent (/I;) 
methods indicate significant directional selection on body size via the third fitness 
component, hatching success. Thus, whether it can be concluded that larger males 
have greater hatching success or not depends on the method used to partition the 
selection gradient. 
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Table 1. Selection gradients ( f SE) for Howard’s bullfrog data x 

Koenig et al. 

Episode (k) 

Bk 

Selection gradients 

B’k B’k 

I. Mating success 5.65 + 1.19*** 5.65 & 1.19*** 5.65 i 1.19*** 
2. Fertility mate per 0.85 + 0.67 2.64 f 1.65 2.45 & 1.54 
3. Hatching success 1.10 +0.62 4.35 f 1.67* 4.00 * 1.51* 

Total selection (&,,,,) 7.60 f I .60*** 

# N = 38 individuals. Standard errors and significance values calculated using the delete-one weighted 
jackknife procedure (see text). 
*P < 0.05; *** P < 0.001; other P > 0.05. 

Simulation studies 

In this section we examine the performance of the above methods of calculating 
selection gradients under several hypothetical selection regimes. First, we consider 
three selection regimes: (1) reinforcing directional selection, both for larger and 
smaller quantitative characters, (2) selection that reverses direction in successive 
episodes, and (3) cases in which individuals attain zero fitness at episodes prior to 
the last. In all examples, seven sequential fitness components are measured. The 
absolute fitnesses of each individual during episode k (W,) are listed in the 
Appendix. Cumulative fitness after each episode is not listed, but can be calculated 
by multiplying the appropriate set of absolute fitness values. 

Reinforcing directional selection 
Consider five individuals (n = 1 to 5) whose character values, z are 11, 12, 13, 14, 

and 15 (for simplicity, we call the character body size). At each episode, let the 
absolute fitness of individual 1 equal 1, individual 2 equal 2, and so on (see 
Appendix); thus, the cumulative fitness of each individual n after episode k is nk. 
Under these conditions, each individual’s divided relative fitness, wkr is identical 
during each episode. 

As shown in Fig. la, j3; values for this example are the same for all episodes, 
reflecting the equivalence of selection acting via each component of fitness. In 
contrast, flk values decrease markedly with each episode, asymptotically approach- 
ing zero. fiz values are intermediate and are closer to B; than to pk. 

Compared to the independent method, example 1 demonstrates how Sk and bk 
values are constrained by selection occurring during earlier episodes. Consequently, 
it is difficult to envisage even a hypothetical example in which sk, and thus bk, 
consistently increase in successive components. This is suggested by example 2, in 
which fitness at each episode is equal to nk and therefore cumulative fitness is equal 
to nXk, at each episode. Except for a very small increase in j$ over B,, Bk still 
decreases markedly, while both /3; and flz increase with successive episodes (Fig. 
lb). 
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Fig. 1. -Values of pkr /I:, and fi; for the six examples described in the text: (a) reinforcing directional 

selection, equivalent at each episode, favoring large size, (b) reinforcing directional selection, increasing 
at each episode, favoring large size, (c) reinforcing directional selection, equivalent at each episode, 
favoring small size, (d) selection favoring large and small individuals alternately at each episode, (e) 
directional selection favoring large individuals reinforced by reproductive failure among the smallest 

individuals at early episodes, and (f) directional selection favoring large individuals countered by 
reproductive failure among the largest individuals at early episodes. Raw data used for these examples 
are listed in the Appendix. 

Example 3 is the converse of example 1 in that selection favors smaller individu- 
als by a factor of z at each episode, and cumulative fitness is n Pk at episode k. 
Again, the results show that b; remains constant while pk increases asymptotically 
to zero (Fig. lc). In contrast to the prior examples, ,8: is more similar to j& than 
to pi. However, the behavior of Bz seems to depend on the exact fitness values 
used, as other simulations of selection for smaller size yielded fit similar to /?;. 

Selection reversing direction at each episode 
In example 4, the direction of selection reverses and the magnitude increases with 

successive episodes. Specifically, for individual n, divided absolute fitness, W,, is 
equal to nk at odd and nek at even episodes such that cumulative fitness is ntk + ‘u* 
at odd and n P(k’2) at even episodes (see Appendix). Under these conditions all three 
selection gradients are very similar at odd episodes when selection is for larger size 
(Fig. Id). At even episodes, when selection reverses direction and favors small 
individuals, bk and /?; are alike while fiz is considerably more negative. 

Individuals drop out of the calculations 
The third category of data studied here is that in which the fitness of some 

individuals equals zero such that they drop out of the calculations for s; and 8;. 
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Two examples are examined. In both, ten individuals of size 11 to 20 are subjected 
to a selection regime similar to that in example 1. In example 5, successively larger 
individuals drop out of the calculations such that failure among the smallest 
individuals reinforces selection for large size among the remaining sample. Example 
6 is identical except that larger individuals successively drop out such that reproduc- 
tive failure opposes the advantage of large size among the remaining individuals 
(see Appendix). 

Results from analyses of these two examples are presented in Figs. le and If. In 
the first, 8; and fit are relatively similar. Both remain constant for several episodes 
and then increase until the last episode, while fik decreases with each episode. In 
example 6, pk and p; are similar and remain close to zero over all episodes, while 
/I: increases exponentially as individuals drop out, reaching a highly negative value 
at episode 6 (Fig. If). This is similar to the performance of the different selection 
gradients under the conditions of reversing selection simulated in example 4, but 
again appears to be dependent on the precise form of the data set. 

One additional example serves to clarify the difference between /Ik and bt, both 
of which are influenced by selection occurring during earlier episodes, and /?;, 
which is not. Consider six individuals, two each of sizes 11, 12, and 13. Imagine that 
three of them (of sizes I I, 12, and 13) survive for only one day and obtain 3, 2, and 
1 matings, respectively, during that day. The other three (also of sizes 11, 12, and 
13) survive for 10 days and obtain 10, 20, and 30 matings (e.g., 1, 2, and 3 matings 
per day), respectively, during their lives. The raw data for this example and results 
of the analyses are given in Table 2. Note that there is no directional selection on 

Table 2. Partitioning of selection in a hypothetical population showing how weighting at a prior episode 
influences selection gradients 

A. Data 

Individual Size Survivorship 

(z) (Days Alive. W,) 
Mating Success 

(Mates/Day Alive, IV,) 
Total 
Mates 

(WI Wd 

I II I 3 3 

2 12 I 2 2 
3 I3 I I I 

4 II IO I 10 
5 12 10 2 20 
6 I3 10 3 30 

B. Analysis 

Component of fitness 

Selection gradient Survivorship 

2 0.00 0.00 

8; 0.00 

Mating success 

0.41 0.48 
0.00 



Partitioning selection via fitness components 317 

size expressed through survivorship, since mean survivorship is equal for each size 
class. There is also no selection via mating success as measured by pi, since 
selection for small size among those individuals surviving for only one day is exactly 
counterbalanced by selection for large size among individuals surviving for 10 days. 
In contrast, both /II* and /I: suggest selection for large size via the second fitness 
component, mating success. This is because individuals with relatively lower fitness 
in the first episode are given proportionally less weight in calculation of & and /I: 
during subsequent episodes. This is not the case for pi. 

Discussion 

Each method of calculating selection gradients yields different results. In calculat- 
ing sk, /Ikr and bz, the character distribution on which selection acts is weighted by 
success at prior episodes, Although the character distribution used to calculate So 
changes from one component to the next, the reference population remains the 
same. In contrast, the reference population explicitly shifts between episodes when 
calculating sb and 8; whenever any individuals die or experience reproductive 
failure, as in Howard’s bullfrog data and examples 5 and 6, above. 

Using the changing variance method, the selection gradient j3: is calculated using 
the variance in the character modified by selection acting via prior fitness compo- 
nents. In most of the examples considered here, directional selection decreases the 
variance in the character with successive episodes. When /I: is positive, as in Figs. 
la and 1 b, the decreased variance compensates for the decline in sk relative to s; 
and yields a /I: similar to 8;. When fiz is negative, as in Figs. Ic and lf, or 
oscillates in sign with each episode, as in Fig. le, the behavior of /I: is erratic and 
depends on the data. Because of its apparent unpredictability, we do not recom- 
mend its usage, and exclude this measure from further discussion. Additional 
discussion of the shortcomings of /I; are provided by Wade and Kalisz ( 1989) who 
also provide details on the conversion of pt to /It values. 

We view sk and pk as measures of the selection realized via one fitness compo- 
nent, taking into account the constraints imposed by selection during prior compo- 
nents (see also Wade and Kalisz 1989). In contrast, s; and j?; measure the 
relationship between a character and each fitness component independent of 
selection during prior fitness events. For example, in the hypothetical data analyzed 
in Table 2, fi; reflects the fact that larger males are not more efficient at obtaining 
matings. However, the positive /& values indicate that selection for larger size by 
increased mating success does occur as a consequence of the interaction of this 
episode with 8, (survivorship). 

What of Howard’s bullfrog data and the question of whether male size influences 
hatching success? On the basis of p; (Table l), we believe it is appropriate to 
conclude that male size has a significantly positive influence on offspring survivor- 
ship. This result poses some potentially interesting questions: (1) Do larger males 
acquire better quality territories or do they defend eggs from predators? (2) Do 
females benefit by mating with larger males due to greater survivorship of offspring 
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in high quality territories? Use of the additive method fails to reveal a relationship 
between male body size and offspring survivorship, halting further hypothesis 
testing along these lines. However, the additive method more accurately depicts the 
importance of offspring survivorship to overall selection on body size of males. 
Using this method, & is small and not significant because it is constrained by 
selection acting via the first fitness component, mating success. 

The choice of which measure to use must ultimately be based on the goals of the 
analysis. If the goal is to determine whether there is a significant relationship 
between a quantitative character and some component of fitness, as will usually be 
the case in studies of the functional consequences of behaviors, the independent 
method is preferable. This method is also appropriate for any set of components 
that multiply to lifetime fitness even if they are not sequential, since p; values are 
independent of the order of components. However, this method is not meant to 
replace a rigorous experimental approach to determining the function of a behav- 
ior, but is simply a way of determining whether a predicted relationship between the 
behavior and fitness is manifest in nature. 

Alternatively, if the goal is to track selection acting via sequential components of 
fitness, as will usually be the case in studies of quantitative genetics, the additive 
method is more appropriate. We do not believe that either one of the measures is 
“correct” in the sense that it is better than the other. Instead, both quantify 
selection from different perspectives and must be interpreted accordingly. As such, 
they should be viewed as complementary, rather than competing, measures of 
selection.DDO 
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Appendix 

Data used for comparison of calculating selection gradients 

tndividual Size 
(character) 

Fitness during episode 

W, w2 W3 W.4 W5 W6 

Example a: Reinforcing directional selection favoring large size equiualeni al each episode 
I I1 1 1 1 1 1 1 
2 12 2 2 2 2 2 2 
3 13 3 3 3 3 3 3 
4 14 4 4 4 4 4 4 
5 15 5 5 5 5 5 5 

Example b: Reinforcing directional selection faooring large size increasing at each episode 
1 II 1 
2 12 2 :2 i i i5 i6 
3 13 3 32 3’ 34 35 36 
2 14 4 42 43 44 45 46 
3 15 5 52 5’ 54 55 56 

Example c: Reinforcing directional selecrion fat’oring small size equicaknf a& each episode 
1 11 1 I 1 1 1 I 

2 12 22’ 2-l 22’ 2-l 2-l 2-l 
3 13 33’ 3-r 3-r 3-l 33’ 33’ 
4 14 4-l 44’ 44’ 4-r 4-l 44’ 
5 15 5-l 5-l 5-1 55’ 55’ s-1 

27 

37 
4’ 

57 

1 

2-l 
3-l 
44’ 

55’ 
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Example d: Selection reversing direction at each episode 
1 11 1 1 1 1 

2 12 2 r2 2’ 2-4 
3 13 3 3v2 33 3-4 35 3-6 
4 14 4 4-2 43 4-4 45 4-6 
5 15 5 5-= 53 5-4 55 5Y6 

Example e: Direclional selection for large size reinforced by failure among small individuals 
I I1 1 0 - - - 

2 12 2 2 0 - - - 
3 13 3 3 3 0 - 
4 14 4 4 4 0 - - 

5 15 5 5 s 5 0 
6 16 6 6 6 6 0 - 

7 17 7 7 7 7 7 0 

8 18 8 8 8 8 8 0 
9 19 9 9 9 9 9 9 
10 20 10 IO 10 10 IO 10 

E.uampk f: Directional seIection for large size countered by failure among large individuals 
I 11 I 1 1 I I 1 
2 12 2 2 2 2 2 2 

3 13 3 3 3 3 3 0 
4 14 4 4 4 4 4 0 
5 15 5 5 5 5 0 - 
6 16 6 6 6 6 0 - 
7 17 7 7 7 0 - - 

8 18 8 8 8 0 - - 
9 19 9 9 0 - - - 
10 20 IO 0 - - 

i7 
3’ 
47 

57 

9 
10 

I 
2 


