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ABSTRACT A primary focus of wildlife ecology is studying how the arrangement, quality, and distribution
of habitat influence wildlife populations at multiple spatial scales. A practical limitation of conducting
wildlife-habitat investigations in the field, however, is that sampling points tend to be close to one another,
resulting in spatial clustering. Consequently, when ecologists seek to quantify the effects of environmental
predictors surrounding their sampling points, they encounter the issue of using landscapes that are partially or
completely overlapping. A presumed problem of overlapping landscapes is that data generated from these
landscapes, when used as predictors in statistical modeling, might violate the assumption of independence.
However, the independence of error is the critical assumption, not the independence of predictor variables.
Nonetheless, many researchers strive to avoid such overlaps through sampling design or alternative analytical
procedures and specialized software programs have been created to assist with this. We present theoretical
arguments and empirical evidence showing that changing the amount of overlap does not alter the degree of
spatial autocorrelation. Using data derived from 2 broad-scaled avian monitoring programs, we quantified the
relationship between forest cover and bird abundance and occurrence at multiple landscapes ranging from
100 m to 24 km across. We found no clear evidence that increasing overlap of landscapes increased spatial
autocorrelation in model residuals. Our results demonstrate that the concern of overlapping landscapes as a
potential cause of violation of spatial independency among sampling units is misdirected and represents an
oversimplification of the statistical and ecological issues surrounding spatial autocorrelation. Overlapping
landscapes and spatial autocorrelation are separate issues in the modeling of wildlife populations and their
habitats; non-overlapping landscapes do not ensure spatial independency and overlapping landscapes do not

necessarily lead to greater spatial autocorrelation in model errors. © 2011 The Wildlife Society.
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Wildlife ecologists are often interested in testing the influ-
ence of the surrounding landscape context on species’ pres-
ence or abundance at sampling sites (Turner et al. 2001,
Brennan et al. 2002), where landscape context is a represen-
tation of a surrounding area that is based on the life-history
of the study species (Vos et al. 2001, McGarigal and
Cushman 2002, Fahrig 2005). When scales relevant to a
species’ life-history are not known or less certain, however,
investigators will often quantify habitat heterogeneity at
multiple spatial scales (Cunningham and Johnson 2006,
Koper and Schmiegelow 2006, Buler et al. 2007, Thogmartin
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and Knutson 2007, Boscolo and Metzger 2009, Desrochers et al.
2010). The data used in such studies often consist of sampling
sites that are spatially clustered and, as such, modeling
wildlife-habitat associations poses potential analytical prob-
lems. First, a highly clustered sample of observations may not
be representative of the distribution over which we want to
make inference. Second, the analysis of these data must deal
with the issue of spatial autocorrelation.

Much of statistical inference is based on the assumption
of independence of errors. When dealing with correlative
models, this assumption relates to the independence of re-
sidual errors that represent the portion of variation not
adequately explained by the predictors in the model
(Draper and Smith 1998, Banerjee et al. 2004). In many
ecological studies, ecologists are concerned with the inde-
pendence of individual sites (Hurlbert 1984), and when
dealing with spatially distributed sampling sites, a lack of
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independence is most likely the result of spatial autocorrela-
tion where sites that are closer together have a tendency to be
more alike (Legendre 1993, Diniz-Filho and Telles 2002).

Spatial autocorrelation in the distribution or abundance of
wildlife populations results from a mixture of both inherent
(endogenous) and induced (exogenous) processes (Fortin and
Dale 2005, Beale et al. 2010). Inherent processes of spatial
autocorrelation can lead to individuals of a population being
spatially clustered in a patchy non-random fashion, and are
often due to some characteristic or trait of that species or
population such as conspecific attraction or juvenile philo-
patry (Campomizzi et al. 2008, Nocera et al. 2009, Nocera
and Forbes 2010). Alternatively, the spatial distribution of an
organism or population may be due to induced processes
imposed by gradients in the environment, such as the distri-
bution of forest cover or elevation. In this case, the species or
population is spatially and functionally dependent on an
environmental predictor and the resultant autocorrelation
is referred to as induced spatial dependence (Lennon
2000, Fortin and Dale 2005). This induced spatial depen-
dency can result from spatially structured environmental
processes that could be occurring at multiple spatial scales,
from local abundance to regional patterns of distribution.
Both sources of spatial autocorrelation in species’ distribu-
tions, inherent and induced, may be problematic for
parametric and randomization tests that require independent
errors (Lennon 2000, Diniz-Filho et al. 2003, Bini et al.
2009, Beale et al. 2010).

In applied settings, researchers have employed 3 basic
approaches to avoid the perceived problems associated
with induced spatial autocorrelation. First, in the planning
stages of a study, sampling sites are spaced far enough apart
such that non-overlapping landscapes of interest can be
delineated around them (Fahrig 2005, Eigenbrod et al.
2011). Alternatively, sites have been removed later, prior
to analysis, if the landscape size of interest results in overlap
(Koper and Schmiegelow 2006, Yamaura et al. 2006). A
special case of this approach is outlined by Holland et al.
(2004), whose program FOCUS uses repeated random sub-
sampling of data to create multiple data sets with non-over-
lapping landscapes; the accumulated results from analyses of
all of these subsets are used to make inferences. Planning to
avoid overlap has proven problematic for the required dis-
tance between sites to ensure spatial independency is not
always clear. Moreover, collecting evenly spaced data for
many studies is not often practical, especially those over
broad spatial scales that rely on opportunistic sampling.
As a result of these challenges, ecologists have employed a
third approach by using a plethora of analytical procedures to
control for residual spatial autocorrelation including meth-
ods that explicitly account for the spatial neighborhood of
sampling sites (Dormann et al. 2007, Bini et al. 2009, Beale
et al. 2010) or information-theoretic approaches that are
thought to have less stringent assumptions of independency
(Pan 2001, Cunningham and Johnson 2006, Thogmartin
and Knutson 2007).

The need to avoid spatial overlap of landscapes during data
collection or prior to analysis can be questioned for multiple

reasons. First, in an empirical example of cactus bugs
(Chelinidea wvittiger) Schooley (2006) noted that the use of
non-overlapping landscapes does not guarantee the elimina-
tion of residual spatial autocorrelation, and concluded that
the problem of spatially correlated areas depends on the size
of the sampling units. Second, as noted above, numerous
analytical methods are available to explicitly account for
autocorrelation that may exist (Dormann et al. 2007, Bini
et al. 2009, Beale et al. 2010). Third, the criticism that
landscape overlap will induce a violation of independency
can be questioned for theoretical reasons. In classic linear
models, the crucial assumption to be met is independence of
residuals of the dependent (or response) variable, not inde-
pendence among regressor values (Draper and Smith 1998,
Wagner and Fortin 2005). Fourth, in many cases spatial
autocorrelation is often unavoidable and should not be con-
sidered a statistical artifact in need of correction or removal,
but rather an indication of a spatially explicit biological or
environmental process (Legendre 1993).

Despite these findings and theoretical considerations,
researchers continue to advocate avoiding overlapping land-
scapes both in planning their data collection or by removing
sites from analysis after the data have been collected.
Recently, Eigenbrod et al. (2011) performed an empirical
test highlighting what they considered 3 of the more com-
mon pitfalls associated with sub-optimal study designs: over-
lapping landscapes, truncated range of predictor values, and
multicollinearity in predictors. With respect to the first of
these, they stated that overlapping landscapes are a form of
pseudoreplication because values of the predictor variables
from nearby landscapes are used as multiple observations in
the dataset resulting in non-independence of the residuals,
and that the degree of pseudoreplication depends on the
degree of the overlap. Using data from 2 broad-scaled sur-
veys, they tested the relationship between anuran abundance
and percent forest cover and compared coefficient shifts
under scenarios meant to replicate these design pitfalls.
Despite finding that overlapping landscapes did not lead
to shifts in the sign of their parameter estimates, their first
recommendation for future studies is the subset of non-
overlapping sites. In spite of mensurative studies on land-
scape fragmentation that have gone to great lengths to have
spatially discrete, replicated landscapes (e.g., McGarigal and
McComb 1995), whether the use of overlapping landscapes
leads to an automatic violation of spatial dependency remains
to be demonstrated. If it does not, then the issue of landscape
overlap may have had exaggerated effects on the field of
wildlife ecology by constraining sample sizes and analyses,
and reducing the power of inference for a large number of
studies.

Our objective was to offer empirical evidence of whether
overlapping landscapes violate the assumption of induced
spatial independence, and further test whether greater over-
lap in landscapes will lead to greater spatial autocorrelation.
Although this general question has been addressed by a small
number of studies already (Holland et al. 2004, Schooley
2006), many of these studies either maintain non-overlap-
ping landscapes or change the sampling size of measurement
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for the predictor and response variable when altering spatial
scale. Our novel contributions are to examine these issues
using field-collected abundance and occurrence data to test
explicitly whether a relationship exists between the magni-
tude of spatial autocorrelation and the degree of landscape
overlap. We use data from 2 avian monitoring programs and
hundreds of sample sites to test for a violation of spatial
independency in modeling wildlife-habitat relationships
when environmental predictor data are generated from over-

lapping landscapes.
STUDY AREA

Data Sources (Bird Data)

We investigated bird species distribution and abundance
patterns using data from 2 independent monitoring schemes,
Project FeederWatch (Wells et al. 1998) and the Ontario
Forest Bird Monitoring Program (FBMP; Cadman et al.
1998). Both projects were created to monitor bird popula-
tions based on information provided by volunteers. They
share useful properties for analyses at multiple spatial scales:
large spatial extent, long duration, large sample sizes, and the
availability of detailed information on land cover. Although
using artificial data are useful for modeling a range of known
spatial structures and multiple comparisons (Beale et al.
2010), we chose to use data from 2 empirical biological
surveys whose data would better reflect the complexities
that are inherent in real-world monitoring programs and
to compare our results to other findings based on empirical
data (Holland et al. 2004, Schooley 2006, Eigenbrod et al.
2011).

Project FeederWatch (PFW) is a citizen science program
operated by the Cornell Lab of Ornithology and Bird Studies
Canada (Wells et al. 1998, Dickinson et al. 2010). In brief,
program participants record the maximum number of each
species seen from a single location near a supplemental
feeding station during periodic, 2-day counts. More than
10,000 PFW sites exist across the United States and Canada,
with as many as 22 counts submitted from each site between
mid-November of one calendar year and early April of
the next calendar year. We have limited our analyses to
649 sites located in New York State monitored between
November 2000 and April 2001 (Fig. 1). We chose this
study area because the sampling points were spatially
clustered and offered a reasonable sampling layout for
testing the effects of overlapping landscapes. We focused
on counts conducted during this time period to correspond
with the time frame over which the land cover data were
collected.

The Ontario FBMP was created to monitor breeding bird
population changes in Ontario forests (Cadman et al. 1998).
It consists of annual point count surveys of all forest song-
birds and covers most of the southern part of the province
and part of the northwestern region (Fig. 2). Our study used
1,147 point count stations grouped in 240 FBMP sites
located in mature forest. Sites generally consisted of 5 point
count stations located more than 100 m from forest edges.
Each station was marked and visited twice each year between
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Figure 1. Project FeederWatch sites used in this study. We restricted our
data to sites in New York State from which data were collected during the
winter of 2000-2001. Overlapping sample landscapes with 24-km radius are
shown (gray lines).

1987 through 2005. The first visit was done between 24 May
and 17 June and the second between 13 June and 10 July.
During these visits, volunteers reported all bird species
seen or heard at an unlimited distance in 10 minutes.
Visits to the same site were separated by a mean of 17.6
days. Surveys were conducted between sunrise and 5 hours
after sunrise, in the absence of heavy rain or wind. The
average number of volunteers for sites with more than 5 years
of monitoring was 1.2. All sites were not visited every year.
The sites retained for analysis were visited 5.8 years in
average (median = 5 yr), over a mean period of 7.2 years
(median = 7 yr).

©

Figure 2. Point count sites for Ontario’s Forest Bird Monitoring Program.
Most of the visible points consist of several individual point count stations, as
exemplified by the insert; overlapping sample landscapes with 24-km radii
are shown (gray lines).
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Data Sources (Land Cover Data)

For analyses using data from PFW, we used the 2001
National Land Cover Data (NLCD) to characterize the
composition of different land cover types in the surrounding
landscape. The 2001 NLCD consists of 16 land cover classes
modeled over the conterminous United States at a 30-m cell
resolution and a 0.40-ha minimum mapping unit (Homer
et al. 2007). For the purposes of this study, we quantified the
percent of the landscape that was classified as forested upland
(deciduous, coniferous, and mixed forested areas where tree
canopy accounts for 25-100% of the cover). We calculated all
landscape metrics using FRAGSTATS (McGarigal et al.
2002). We conducted land cover analyses using ArcMap 9.2
(Environmental Systems Research Institute, Inc., Redlands,
CA).

For analyses using data from FBMP, we acquired forest
cover from a land cover classification map based on a com-
posite Landsat Thematic Mapper image of Ontario, with a
resampled cell size of 25 m x 25 m (Spectranalysis, Inc.
1999). This spatial database was produced under 3 separate
programs of the Ontario Ministry of Natural Resources
between 1991 and 1998 and represented the most recent
land cover data available. Forest cutovers and burns were
updated from 1996. The image was originally classified in 28
land cover classes. We reclassified it into 4 vegetation classes
(coniferous, deciduous, mixed, and non-forest) plus an un-
known land cover category, using ArcMap 9.2. The accuracy
of the original, high-resolution land cover data was estimated
at 90% for the forest classes (Spectranalysis, Inc. 1999), and
we assumed classification accuracy was substantially greater
than 90% after merging original classes into 4 broader
groups. The positional accuracy of the map was within 2
pixels (50 m; Spectranalysis, Inc. 1999); thus, we assumed
that forest area estimates were accurate. Although changes
must have occurred from 1987 to 2005 in the landscapes
studied, we assumed that such changes were sufficiently small
to be ignored; the southern part of the area had a largely
agricultural matrix and the timber harvest throughout the
area was done using selective logging.

METHODS
For both PFW and FBMP, we calculated the percent area of

forest measured around the center of each count station in
concentric circles of different radii (100 m, 200 m, 400 m,
800 m, 1.6 km, 3.2 km, 6.4 km, 12.8 km, and 24.0 km).
The grid resolution of the land cover map was constant
among radii. If more than 20% of the landscape area was
classified as unknown, then data from that station were not
used for analyses at that specific radius. Given the different
spatial distribution of sampling points for PFW and FBMP,
these landscapes of increasing radii presented a range of total
landscape overlap. For each landscape radius, we calculated
the total percent overlap of the landscapes in the study area
(calculated as the area of intersecting overlap/total area
covered by landscapes).

For PFW and FBMP data, we selected bird species that
were well-sampled by both surveys, occupied forest as a
wintering habitat, and were directly comparable across the

2 data sets. The final list of species included hairy wood-
pecker (Picoides villosus), downy woodpecker (Picoide pubes-
cens), blue jay (Cyanocitta cristata), black-capped chickadee
(Poecile atricapillus), white-breasted nuthatch (Sitta caroli-
nensis), and red-breasted nuthatch (Sitta canadensis). For
PFW, we modeled the relative abundance as the average
of maximum counts (N) for a species seen at a single site
throughout the 2000-2001 winter sampling season as an
index of relative abundance. The counts were In(V + 0.1)
transformed effectively producing residuals with normal dis-
tributions (Poisson modeling was not appropriate for non-
integer averaged count data). We used a generalized linear
model (GLM) with a Gaussian error distribution followed
by residual analyses to detect for signs of non-normality in
the residuals or evidence of heteroscedasticity (Faraway
2006, McCulloch et al. 2008). We generated 9 separate
GLMs (1 for each landscape radius), and used the proportion
of forest as the predictor variable (linear and quadratic effect
forms) in each model.

For FBMP, the response variable of the models was the
proportion of years of survey in which the species was
recorded, which we modeled using a generalized linear mixed
model (GLMM). We fit these models using penalized
quasi-likelihood. To account for the repeated sampling of
the FBMP data, we used mixed-models with site as a
variance-components random effect (PROC GLIMMIX,
SAS Institute, Inc., Cary, NC) and area of mixed, conifer,
and deciduous forest as fixed effects. A species was consid-
ered to occur at a point count station in a given year if it was
recorded during at least 1 of the 2 annual visits made by the
observer. We omitted songbird and woodpecker species with
frequencies <10% from analyses, thus leaving 37 species for
analysis (Appendix 1, available online at www.onlinelibrary.
wiley.com).

For models using data generated from both PFW and
FBMP, we assessed patterns of spatial autocorrelation by
calculating spatial correlograms (Moran’s I) of model resid-
uals across increasing distance classes (CLiff and Ord 1973,
Bjeornstad et al. 1999, Bjernstad and Falck 2001). At each
distance class, we ran 1,000 permutations to conduct a 2-
sided significance test of whether the value for Moran’s I
differed from zero (o« = 0.05). We ran analyses using R (R
Foundation for Statistical Computing, Vienna, Austria) and
package “nct” was used for spatial analyses. In addition, given
the large number of species analyzed with FBMP data
(Appendix 1, available online at www.onlinelibrary.wiley.
com), we calculated a single value of Moran’s I for each
species-radius combination to look for systematic relation-
ships between autocorrelation and the amount of overlapping
landscapes across all species. We tested the overall relation-
ship between landscape overlap and Moran’s [ for residuals
using a generalized mixed effect model with overlap (%) as a
fixed effect and species as a random effect, using Kenward—

Roger degrees of freedom (Schaalje et al. 2001).
RESULTS

Large numbers of sampling sites were in close proximity in

both PFW and FBMP datasets, leading to significant spatial
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overlaps of larger landscapes surrounding sampling sites
(Table 1; Figs. 1 and 2). The percentages of overlap for
landscapes of different sizes ranged from 0.7% to 82.5% for
PFW and 1.1% to 70.0% for FBMP points (Table 1). The
range and variation of the percentage of forest cover changed
as aresult of the size of the landscape radius, but the direction
of this change differed between the PFW and FBMP study
areas (Fig. 3). For the PFW sites, the mean forest cover
increased from 20.19% (SE 1.11) at the smallest landscape
radius to 34.35% (0.79) at the largest landscape radius. For
FBMP sites, the mean forest cover decreased from 69.05%
(SE 0.45) t0 30.73% (0.28). In both cases, however, the range
in the variation of forest cover generally decreased as the size
of the landscape radius increased (Fig. 3).

Significant spatial autocorrelation in model residuals was
present for PEFW data, but its amount and extent were highly
variable among the 6 species examined (Fig. 4). As expected,
sites in closer proximity were generally more alike (positive
autocorrelation) than more distant sites (Fig. 4). For most
species, significant autocorrelation in the model residuals
persisted at inter-site distances of 100 km or more. In all
cases, however, spatial autocorrelation did not differ notice-
ably between models using small (non-overlapping) land-
scapes or large (overlapping landscapes). Counter to the
predictions of an increase in spatial autocorrelation with a
greater degree of landscape overlap, some species including
blue jay, black-capped chickadee, and white-breasted nut-
hatch, demonstrated less spatial autocorrelation with the
larger, overlapping landscapes (Fig. 4). As an example, the
abundance of black-capped chickadees exhibited a high
degree of spatial autocorrelation at distance classes ranging
from 5 km to 100 km with models using small, non-over-
lapping landscapes, but spatial autocorrelation decreased to 0
at 40 km when larger, overlapping landscapes were used
(Fig. 4).

We found similar patterns of spatial autocorrelation in the
residuals of models using the FBMP data set (Fig. 5).
Although significant positive spatial autocorrelation was
clear for the 6 study species common to both data sets,
none showed a difference in the patterns of spatial autocor-
relation in relation to sizes of landscapes. Similarly, although
data from all 37 FBMP species exhibited residual spatial

autocorrelation, we found no relationship between landscape

Table 1. Spatial overlap among landscapes centered on bird feeding stations
(Project FeederWatch) or point count stations (Ontario Forest Bird
Monitoring Program).

- = T+ -
=3 : - = ] -
-
- T -
- ! H -
- i
[= T T o _| et | i
@ - @ L
= : N
£ gl 2 i
[ i |
?; .
o i
[t ; -
4 :
[ o=
<+ i =
: g
L fioy W
| s
=] | ] .
2] l o
o Lod - o

T T T T T T T T T T T T T T T
01 04 16 64 24 01 04 16 64 24
Landscape radius (km)

Figure 3. Box-and-whisker plots of the percentage of forest cover (%)
calculated using the 9 separate radii (0.1-24 km) for the Project
FeederWatch (A) and Ontario’s Forest Bird Monitoring Program (B) sites.
The plots demonstrate how the percentage of forest cover increases with
increasing landscape scale in Project FeederWatch sites, but with the oppo-
site trend observed with Ontario’s Forest Bird Monitoring Program sites.

overlap and residual spatial autocorrelation (F; 2591 = 0.01,

P =0.9; Fig. 6).
DISCUSSION

We found significant residual spatial autocorrelation in pat-
terns of species occurrence or abundance in data from both
FeederWatch and Ontario FBMP even after accounting for
forest cover composition. An initial inspection of these
patterns may provide grounds for concerns that overlapping
landscapes lead to a violation of spatial independence
(Holland et al. 2004). However, we found no evidence of
a relationship between the extent of landscape overlap and
the degree of spatial autocorrelation among model errors
even though overlap was sometimes extensive. The lack of
any relationship between spatial autocorrelation and the
degree of overlap among sampling sites suggests that elimi-
nating or sub-sampling sites to avoid pseudoreplication in
this case would be unnecessary, leading only to smaller
sample sizes and weaker inference in modeling wildlife-
habitat relationships.

We found that for some species in this study, residual
spatial autocorrelation actually was less significant when
larger, overlapping landscapes with more spatial overlap
were used compared to analyses using predictors with less
(or no) landscape overlap. This could be a function of larger
landscapes capturing a greater amount of relevant environ-
mental variability, which, in turn, explains more of the spatial
dependency among sites (Lennon 2000, Desrochers et al.
2010). The pattern of less spatial autocorrelation using the
larger landscapes was most apparent in the PFW data set
(Fig. 4). In these sites, the composition of forest cover
generally increased with increasing landscape radius; an

opposite pattern was found with FBMP sites (Fig. 3).

Spatial overlap (%)
Landscape Project Ontario Forest Bird
radius (m) FeederWatch Monitoring Program
100 0.7 1.1
200 0.9 2.3
400 1.7 5.8
800 4.3 14.7
1,600 11.1 25.0
3,200 24.4 35.2
6,400 433 45.9
12,800 63.7 56.7
24,000 82.5 70.0
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Figure 4. Spatial correlograms of model residuals from a selection of 6 species from Project FeederWatch. Moran’s I values as a function of distance classes are
shown from models with the smallest 100-m landscape (solid lines) and the largest 24-km landscape (dashed lines). Significant autocorrelation (P < 0.05) at
each distance class is represented for the smallest landscapes (open circles) and largest landscapes (star).

Eigenbrod et al. (2011) found that the numerical range of the
predictor variable, forest cover in their study, had the largest
effect on parameter estimates and the strength of the inferred
relationships. As such, if resources are available for intensive
sampling, larger numbers of samples within a geographical
extent will not lead to design flaws or statistical violations.
On the contrary, it should lead to a more representative
sample of habitat availability and greater precision of esti-
mates for the effects of environmental predictors.
Although we found no evidence of greater overlap of land-
scapes leading to greater spatial autocorrelation, attempting
to minimize overlapping landscapes has several advantages.
The use of landscapes with limited overlap will generally be
indicative of a larger study area with greater variation of
habitat characteristics, a desirable statistical property when
assessing wildlife-habitat associations. However, restricting
data collection to sites with non-overlapping landscapes
could also lead to a loss of sample size and a subsequent
reduction in the range of a predictor variable. As such, a study
design dictated by landscape overlap could conflate spatial
scale and spatial overlap of samples. In addition, another
potential problem of overlapping landscapes is the issue of
using nested landscapes in a single model to evaluate species
responses to habitat at multiple scales (Dungan et al. 2002).

In this case, when data are generated from landscapes of
multiple, nested radii the predictor variables tend to be
highly correlated with one another (i.e., multicollinearity;
Graham 2003, Williams and Kremen 2007, Boscolo and
Metzger 2009). Certainly, this is a potential problem
when a study focuses on assessing the relative influence of
habitat availability at multiple scales, but this issue is differ-
ent from the potential violation of spatial independency
resulting from overlapping landscapes.

Our analyses support the findings from other studies sug-
gesting that non-overlapping landscapes do not necessarily
ensure spatial independency (Schooley 2006), but we addi-
tionally found no evidence that even large percentages of
overlap lead to greater autocorrelation in model residuals. In
their study of habitat relationships for neotropical migrants
in the southern Appalachian Mountains, Lichstein et al.
(2002) suggested that the use of overlapping landscapes
may have contributed to spatial autocorrelation in their
models, but went on to suggest that their habitat variables
would have been autocorrelated even if the circles were non-
overlapping because of larger-scale variability in habitat
composition. They presented overlap as a cause for further
spatial autocorrelation, but did not suggest non-overlapping
landscapes as a solution. We tested for the effect of increasing
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landscape overlap and found no evidence for a consistent
increase in spatial autocorrelation with increased overlap
using data from 2 study areas with very different patterns
of forest composition.
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Figure 6. Relationships between spatial autocorrelation and overlap among
landscapes in 37 species for which we analyzed data from the Ontario’s Forest
Bird Monitoring Program.

MANAGEMENT IMPLICATIONS

The issue of spatial autocorrelation and its effects on eco-
logical modeling is an active and complex area of research.
Spatial independence among sites should not be assumed by
setting thresholds of similarity among regressor values, nor
should researchers assume that overlapping landscapes lead
to an immediate reduction in independent sample size.
Instead, researchers need to use any of the number of ana-
Iytical techniques available for assessing and incorporating
the effects of residual spatial autocorrelation into the analysis
of ecological data (Betts et al. 2006, Dormann et al. 2007,
Bini et al. 2009, Beale et al. 2010). Spatial autocorrelation is
only problematic when it is assumed not to exist in a data set
or it is not explicitly accounted for and the results of a model
are interpreted incorrectly (Lichstein et al. 2002, Dormann
et al. 2007, Hawkins et al. 2007). In addition, an overem-
phasis on overlapping landscapes as a sole cause of spatial
autocorrelation tends to ignore behavioral characteristics of
wildlife species that affect the scale of spatial independence.
Indeed, researchers should investigate possible sources of
inherent spatial autocorrelation that could lead to spatial
clustering, such as conspecific attraction. Incorporating
this information can, in some cases, improve models of
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habitat use (Nocera and Forbes 2010). The failure to find a
significant spatial pattern in model errors does not demon-
strate absence of influential autocorrelation, and even in
these cases, weak autocorrelation can have substantial effects
on parameter estimation and model interpretation (Beale
et al. 2010). Evaluating the presence and degree of spatial
autocorrelation is essential, regardless of steps taken to try to
minimize spatial dependency during the design of sampling
schemes or processing of data for analysis.
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