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What drives masting? The phenological synchrony hypothesis
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Abstract. Annually variable and synchronous seed production, or masting behavior, is a
widespread phenomenon with dramatic effects on wildlife populations and their associated
communities. Proximally, masting is often correlated with environmental factors and most
likely involves differential pollination success and resource allocation, but little is known
about how these factors interact or how they influence seed production. We studied masting in
the valley oak (Quercus lobata Née), a California endemic tree, and report evidence that
phenological synchrony in flowering driven by microclimatic variability determines the size of
the acorn crop through its effects on pollen availability and fertilization success. These findings
integrate two of the major factors believed to influence seed production in wind-pollinated
species—environmental conditions and pollen limitation—by means of a coherent mechanistic
hypothesis for how highly variable and synchronized annual seed production is accomplished.
We illustrate how, by means of a simulation based on the mechanism proposed here, climate
change may influence masting patterns through its effects on environmental variability.

Key words: Hastings Natural History Reservation, coastal California, USA; mast fruiting; masting;
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INTRODUCTION

Masting or mast fruiting consists of both highly

variable seed production between years and synchrony

in seed production within years among individuals

within a population (Koenig and Knops 2000, Kelly

and Sork 2002, Koenig et al. 2003). Within communi-

ties, masting can have dramatic effects. For example,

work in eastern deciduous forests has demonstrated that

the variable acorn crop initiates a ‘‘chain reaction’’ of

responses that cascade through the ecosystem, affecting

densities of deer, mice, ground-nesting birds, gypsy

moths, and the tick vectors of Lyme disease (Elkinton et

al. 1996, Ostfeld 1997, Jones et al. 1998, McShea 2000,

Ostfeld and Keesing 2000). Equally dramatic effects of

mast seeding on animal populations have been docu-

mented in European (Jedrzejewska and Jedrzejewska

1998, Satake et al. 2004), boreal (Koenig and Knops

2001), New Zealand (Kelly et al. 2008), and Malaysian

dipterocarp forests (Curran et al. 1999, Curran and

Leighton 2000).

Functionally, it is generally believed that masting

serves to either reduce long-term seed predation by

limiting predator populations (the ‘‘predator satiation’’

hypothesis; Janzen 1971), or to increase pollination

efficiency through synchronized flowering effort (Mo-

reira et al. 2014), an effect most likely to be observed in

wind-pollinated species that make up a high proportion

of masting taxa (Smith et al. 1990, Kelly et al. 2001).

Proximally, masting frequently correlates with environ-

mental cues such as temperature or rainfall potentially

associated with resources that are in turn allocated so as

to exaggerate variation in seed production among years

(Kelly and Sork 2002, Kelly et al. 2013). Notably,

however, little attention has been paid to the mecha-

nisms driving this process (Pearse et al. 2014), despite

considerable work investigating the factors promoting

the evolution of wind pollination (Regal 1982, White-

head 1983, Cully et al. 2002). In valley oaks (Quercus

lobata) in central coastal California, USA, for example,

there is a strong positive correlation between mean

maximum April temperature and subsequent acorn

production (Fig. 1). How and why do temperatures,

specifically in April, correlate with subsequent acorn

production?

Here we propose a novel hypothesis linking temper-

ature and variable seed production in the valley oak.

The hypothesis involves annual variability in microcli-

matic conditions driving differences in phenological

patterns in the population. The hypothesis is a

mechanistic one, and assumes pollen limitation, which,

although rarely tested in wind-pollinated species (Koe-

nig and Ashley 2003), has been demonstrated to have an

important effect on seed production in valley oaks

(Koenig et al. 2012; Pearse et al. 2015). The hypothesis

also provides an alternative to the ‘‘weather as a cue’’

hypothesis proposed by Kelly et al. (2013) by proposing

that the correlation between weather and seed produc-

tion in this species is due to a direct, mechanistic
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relationship linking these two factors (Pearse et al.

2014). The hypothesis is specifically at the proximate

level, and thus is complementary to functional explana-

tions for masting such as predator satiation and

pollination efficiency.

The valley oak is a deciduous, wind-pollinated,

monoecious tree species endemic to California, wide-

spread within the state (Griffin and Critchfield 1972),

and of considerable conservation interest due to

diminished recruitment (Tyler et al. 2006), the poten-

tially adverse effects of climate change (Kueppers et al.

2005, Sork et al. 2010), and, in some sites, limited gene

flow due to reduced pollen availability (Sork et al.

2002a). Selfing and hybridization with the closely related

and often sympatric blue oak (Q. douglasii ) are

relatively rare (Craft et al. 2002, Sork et al. 2002b,

Abraham et al. 2011). Meanwhile, annual variability in

acorn production is high (mean annual coefficient of

variation ¼ 111.7%), is strongly correlated with mean

maximum spring temperatures (Fig. 1; see Koenig et al.

1996), and is driven largely by annual differences in

abortion rates among flowers caused by a combination

of pollen limitation, resources, and other factors

(Koenig et al. 2012; Pearse et al. 2015).

THE PHENOLOGICAL SYNCHRONY HYPOTHESIS

We propose four steps linking the strong, highly

significant relationship between mean maximum spring

temperature and the subsequent acorn crop (Fig. 2).

First (step 1), we hypothesize that temperature during

the spring correlates with the homogeneity of microcli-

matic conditions throughout the study area. Specifically,

we propose that cold spring temperatures (which also

tend to be wet, because there is a strong negative

correlation between temperature and rainfall in this

region) correlate with relatively heterogeneous microcli-

matic conditions throughout the study site, whereas

warm, dry spring temperatures result in relatively

homogeneous conditions. Second (step 2), we hypothe-

size that the differences in microclimatic heterogeneity

proposed in step 1 drive differences in phenological

variability, or synchrony, within the population. That is,

during cold years when the heterogeneity in microcli-

mate is great, variability in flowering is large and trees

flower asynchronously, whereas in warm years the

relatively homogeneous microclimate results in synchro-

nous flowering and pollen production among trees in the

population.

Third (step 3), we hypothesize that the differences in

phenological synchrony proposed in step 2 drive

differences in pollen availability. Specifically, synchro-

nous flowering leads to relatively synchronous (and thus

high) pollen availability because trees within the

population tend to be flowering and producing pollen

at the same time, whereas asynchronous flowering leads

to relatively asynchronous and, thus, low pollen

availability. Finally (step 4), we hypothesize that

differences in pollen availability drive differences in

fertilization success, with low fertilization success and

small acorn crops in cold years and high fertilization

success and large acorn crops in warm years.

MATERIALS AND METHODS

Species and study site

We studied a population of 84 mature Q. lobata trees

at Hastings Natural History Reservation, located in the

Santa Lucia Mountains of central coastal California,

between 1980 and 2012 (see Plate 1). Q. lobata is a

winter-deciduous species in the white oak subgenus

(Quercus) and matures acorns in a single season.

Hastings is ;40 km inland and ranges in elevation

from 460 to 950 m. The region has a mediterranean

climate of dry summers and wet winters; annual rainfall

ranges from 153 to 1131 mm (over 73 years, from 1940

to 2012, inclusive), with a mean (6 SD) of 526 6 192

mm. Oak (genus Quercus) is the dominant genus

throughout the study site. Five species are common,

including Q. lobata, Q. douglasii, and Q. agrifolia at

lower elevations, joined by Q. chrysolepis and Q.

kelloggii at higher elevations.

Data

Overall environmental conditions were measured by a

weather station located at Hastings Reservation head-

quarters. Three sets of data were gathered on each tree,

from which we calculated variability in microclimate

and phenology.

Microclimate.—Small automated temperature record-

ers (iButtons; Maxim Integrated Products, Sunnyvale,

California, USA) were located on the north side of each

tree ;1.5 m above ground, thus providing a measure of

microclimate that was consistent across trees. iButtons

were programmed to record temperatures at 4-h

FIG. 1. Relationship between mean maximum April tem-
perature and the mean (ln-transformed) acorn crop the
following autumn for 84 valley oak (Quercus lobata) trees at
Hastings Natural History Reservation in the Santa Lucia
Mountains, central coastal California, USA. The observation
period was N ¼ 33 years (1980–2012). See Materials and
methods: Acorn production for details on measuring crop size.
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intervals starting at 04:00 hours each day; thus, six

recordings were made daily at 04:00, 08:00, 12:00, 16:00,

20:00, and 24:00 hours. For the analyses performed here,

we calculated the mean of the daily maximum temper-

atures for each tree for each year between 1 March and

30 April, encompassing the period when budburst takes

place in this population (Koenig et al. 2012). iButtons

were first deployed in 2004 and were available for all

trees by 2009 (minimally for 59 of the trees in 2005 and

2006).

Phenology.—Each spring from 2003 to 2012, starting

on or before 1 March, we surveyed trees weekly for

budburst and flowering activity. Each tree was examined

with binoculars and scored based on budburst, catkin

stage, and catkin number. For the analyses performed

here, budburst was used as a proxy for flowering and

pollen production, which follow budburst by an average

of 12.3 days (Koenig et al. 2012). Budburst was used as

the measure of phenology because it was relatively easy

to quantify objectively and was thus likely to entail the

least error. Analyses conducted here involve the Julian

date in each year when a tree was determined to have

undergone budburst, defined as the first date on which at

least 5% of the tree had leafed out and was green.

Acorn production.—Acorn production was determined

in early- to mid-September starting in 1980 by means of

visual surveys in which two observers counted as many

acorns as they could on each tree in a 15-s period, a

technique that has been found to provide a good index

of acorn availability under most conditions (Koenig et

al. 1994a). Counts of acorns were added together

(variable ‘‘N30’’) and ln-transformed (ln(N30 þ 1) ¼
LN30) in order to reduce the correlation between the

mean and the variance.

Estimating variability.—For each year, we calculated

variability among trees (estimated by the coefficient of

variation; CV¼ standard deviation3 100/mean) for two

sets of variables: (1) the mean maximum daily temper-

ature in microclimate during the spring budburst and

flowering period (1 March–30 April, N ¼ 9 years), and

(2) mean budburst date (N¼10 years). CVs were used as

the standard measure of relative variability used in

studies of masting (Koenig et al. 2003). However, in

order to avoid the statistical problems of using a ratio

variable when correlated against the original scaling

variable (Lewontin 1966, Atchley et al. 1976), we also

report results using the standard deviation of the ln-

transformed values of relative microclimatic variability

vs. mean maximum spring temperature in the analysis

where this is an issue.

Relationships were determined by Pearson correla-

tions. All analyses were conducted in R2.15.1 (R

Development Core Team 2012).

Simulation of acorn production

In order to estimate how climate change might be

expected to influence masting behavior of Q. lobata,

given the mechanism linking weather and masting

proposed here, we conducted simulations estimating

variability in acorn production for each of seven mean

maximum spring (1 March–30 April) temperatures (16–

238C; observed mean 6 SD for the years 1980–2012 ¼
17.98 6 2.08C; range between 1939 and 2012 was 13.6–

22.38C). For each set of trials, we started with the mean

(ln-transformed) acorn crop chosen randomly from the

observed distribution (mean 6 SD) of 1.87 6 1.05. We

then simulated 33 years of acorn production (matching

the length of the observed data) using the following

iterative procedure:

1) We randomly chose a value for the mean maximum

spring temperature from a distribution centered on

the mean for the run (168 to 238C) and a SD equal to

the observed value of 2.08C. Then, based on the

relationships in the actual data, we:

2) calculated the CV in spring microclimate using the

mean maximum spring temperature chosen in step 1;

3) calculated the CV in flowering phenology (pheno-

logical synchrony) using the CV in microclimate

determined in step 2; and

4) determined the size of the current year’s acorn crop

using the CV in flowering phenology determined

from step 3 along with the prior year’s acorn crop.

Although not included elsewhere in the model, the

prior year’s acorn crop was included in step 4 because

previous analyses have shown that acorn production in

several species of oaks is negatively autocorrelated with

a 1-yr time lag (Koenig et al. 1994b), a relationship

implying that acorn production requires a significant

investment in resources requiring more than a year to

recover (Sork et al. 1993). In the case of Q. lobata, both

the acorn crop in year x� 1 and mean maximum April

temperature in year x are significantly related to the size

of the acorn crop in year x (linear regression of the mean

acorn crop [ln-transformed] on spring temperature and

the prior year’s acorn crop using data from 1980 to 2012

[N ¼ 33 years]; for April temperature, P , 0.001; for

prior year’s acorn crop, P ¼ 0.02).

In order to standardize productivity across trials,

acorn crop size was adjusted to the same mean

productivity (mean ln-transformed acorn crop ¼ 2.0) at

the completion of each trial. In order to obtain estimates

of variability of acorn production, we conducted 100

complete sets of trials, in which each trial consisted of a

set of 33 years for each integer value of mean maximum

spring temperature from 168 to 238C. For each of the

trials, we calculated the coefficient of variation (CV) of

acorn production, and then, using all 100 trials at each

temperature value, we calculated the mean 6 SE of the

CVs to yield an index of masting. The simulation,

written in R, is provided in the Supplement.

Given the potential for future climate change to

increase climate variability (Meehl and Tebaldi 2004,

Schär et al. 2004), additional runs were conducted,

varying the standard deviation of the mean maximum
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early spring temperature. These changes did not alter the

conclusions and are not discussed further.

RESULTS

Mean temperature vs. microclimate homogeneity (step 1)

The correlation between the mean maximum temper-

ature from 1 March to 30 April (as measured by the on-

site weather station) and homogeneity of microclimate

during the same time period (as estimated by the CV of

mean maximum temperatures measured at each tree by

the automated temperature recorders) was significantly

negative (r ¼�0.78, N ¼ 9 years, P ¼ 0.012; Fig. 3a).

Results were similar using the standard deviation of the

ln-transformed mean maximum temperature rather than

the CV of the untransformed data (r ¼ �0.81, N ¼ 9

years, P ¼ 0.009). Thus cold, wet weather in spring

during the flowering period was associated with more

variable and heterogeneous microclimatic conditions

across the study site during the spring flowering period.

Microclimatic homogeneity vs. phenological synchrony

(step 2)

Phenology of individual trees was correlated with

microclimatic conditions, with trees in warmer micro-

sites undergoing budburst and flowering earlier than

trees in colder microsites (Fig. 4). Thus, step 2 in the

hypothesis is that cold, heterogeneous spring conditions

result in asynchronous budburst in the population,

FIG. 2. Proposed relationships linking spring weather conditions to acorn production in Quercus lobata. Cold, wet springs (left
side) correlate with spatially heterogeneous microclimatic conditions, asynchronous budburst and flowering, protracted and thus
generally low pollen availability, poor fertilization success, and ultimately a small acorn crop. Warm, dry springs (right side)
correlate with spatially homogeneous microclimatic conditions, synchronous budburst and flowering, and thus high pollen
availability, good fertilization success, and ultimately a large acorn crop.
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whereas warm, homogeneous spring conditions result in

relatively synchronized population phenology. The

correlation between the CV of mean maximum temper-

ature during the spring flowering period measured at the

84 individual trees and the CV of budburst date for the

nine years for which we have temperature data was

highly significantly positive (r¼0.77, P¼0.016; Fig. 3b),

as predicted.

Phenological synchrony vs. fertilization success (step 3)

Step 3 postulates a positive relationship between

phenological synchrony and pollen limitation. Al-

though no direct data on pollen availability or

fertilization success are currently available, studies of

Q. ilex and Q. pubescens in Spain found positive

correlations between the proportion of trees with

catkins and the amount of pollen in the atmosphere

(Fernández-Martı́nez et al. 2012), and prior work has

found that Q. lobata trees in our population that leaf

out and flower in the middle of the season when more

trees are in bloom produce more acorns than trees that

flower early or late in the season (Koenig et al. 2012).

Pollen supplementation in our population also in-

creased acorn set in one of two years, providing

experimental support for pollen limitation (Pearse et

al. 2015). These results support the assumption that

more pollen is available, and thus fertilization success is

likely to be greater, when more trees are flowering, as

occurs when budburst is more synchronized within the

population. With the data currently available, however,

we cannot exclude alternative hypotheses for factors

that might drive a relationship between phenology

variability and the success of female flowers, such as

weather conditions affecting flower abortion indepen-

dent of pollen availability.

Phenological synchrony vs. the acorn crop (step 4)

Finally, step 4 predicts that low pollen availability

due to asynchronous flowering results in low fertiliza-

tion success and a small acorn crop, whereas high

pollen availability due to synchronized flowering

results in high fertilization success and a large acorn

FIG. 3. Relationships between mean maximum spring
temperature, variability of microclimate, variability of phenolo-
gy, and the acorn crop, with correlation coefficients (r values)
and P values. (a) The correlation between mean maximum
temperatures during the spring flowering period (1 March–30
April) and the coefficient of variation (CV) in mean maximum
microclimatic temperatures during the same period at individual
Q. lobata trees; N ¼ 9 years (2004–2012). (b) The relationship
between the CV in mean maximum microclimatic temperatures
during the spring flowering period at individual Q. lobata trees
and the CV in budburst date of the same 84 trees; N¼ 9 years,
2004–2012. (c) The correlation between the CV in budburst date
among the 84 individual Q. lobata trees and the mean acorn crop
produced by the same trees the following autumn as measured by
visual surveys (the ln-transformed number of acorns counted in
30 s); N¼ 10 years, 2003–2012.

FIG. 4. Correlation between mean maximum early spring
temperature at individual trees (1 January–28 February) and
budburst of Q. lobata in 2010 (N ¼ 83 trees).
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crop. Prior studies have demonstrated a significant

relationship between flower survivorship and the

subsequent acorn crop both in valley oak (Pearse et

al. 2015) and in other oak species (Sork et al. 1993,

Pérez-Ramos et al. 2010), suggesting that the size of

the acorn crop is at least partly determined by

fertilization success of flowers. Thus, the key relation-

ship predicted by this step is between phenological

synchrony and the size of the subsequent acorn crop.

With 10 years of data, this correlation is significantly

negative (r ¼ �0.69, P ¼ 0.027; Fig. 3c), thus

confirming that more asynchronous budburst corre-

lates with smaller acorn crops, as well as completing

the steps linking mean maximum spring temperatures

to subsequent masting behavior.

Simulation of the potential effects of climate change

The potential effects of climate change were

estimated by simulations in which variability in the

acorn crop over 33-yr periods was determined based

on the observed relationships between mean maximum

spring temperature, microclimatic variability, pheno-

logical synchrony, prior investment, and the size of

the acorn crop. Results with varying mean spring

temperatures from 28C colder to 58C warmer than the

observed value clearly illustrate how annual variability

in acorn production (masting behavior) is predicted to

decrease as spring temperatures increase, independent

of any change in overall mean productivity (Fig. 5).

DISCUSSION

These results provide support for a novel mechanistic

hypothesis for how masting is accomplished within a

population of forest trees. The hypothesis is explicitly

proximate, and thus is compatible with predator

satiation, pollination efficiency, and other functional

(ultimate-level) hypotheses (Kelly 1994, Kelly and Sork

2002).

Several aspects of the hypothesis are of interest. First,

it integrates environmental conditions and pollen

limitation, the two major factors generally thought to

influence seed production in wind-pollinated species

(Kelly and Sork 2002). Second is the manner in which

the hypothesis incorporates annual differences in micro-

climatic heterogeneity. Although microclimate is known

to vary widely, depending on a variety of physiographic

factors (Vanwalleghem and Meentemeyer 2009), and is

recognized as having an important influence on species

distributions (Suggitt et al. 2011), it is only recently that

it has become feasible to quantify microclimatic

variability, and this is one of the first times that

interannual differences in microclimatic variability have

been quantified or used in an ecological context. We

predict that microclimatic variability will be found to

play a far more important ecological role as its

measurement becomes more widespread.

Third, our hypothesis postulates that acorn produc-

tion is affected not by the onset or mean date of any

particular phenological event, but rather by the vari-

ability in the phenological response of the population,

which we refer to as phenological synchrony. Although

reproductive synchrony has long been known to be

evolutionarily significant in a variety of contexts (Ims

1990) and there has been considerable study of the

importance of the fitness consequences of phenological

differences within populations (Schemske 1977, English-

Loeb and Karban 1992, Koenig et al. 2012), the

potential ecological consequences of phenological syn-

chrony within plant populations have rarely been

investigated (Augspurger 1981).

Fourth, the phenological synchrony hypothesis pre-

dicts that changes in mean temperature due to future

climate change, by their effect on microclimatic vari-

ability, will alter patterns of phenological synchrony and

variability in annual seed production by the population.

Specifically, increased temperatures during the spring

flowering period can be expected to result in a decrease

in the intensity of masting. This contrasts with the

temperature-differential cue hypothesis for masting

recently proposed by Kelly et al. (2013), which

postulates that the difference in mean temperature

between years drives masting behavior, and thus that

long-term changes in mean temperature are unlikely to

affect variability of seed production. Although a

plausible alternative to the phenological synchrony

hypothesis, no mechanism by which temperature differ-

ences between years might be detectable by plants or by

which plants would be able to respond with an

FIG. 5. The predicted masting pattern (mean 6 2 SE of the
CV of the mean annual acorn crop) of Q. lobata as a function of
mean maximum spring temperatures as determined by com-
puter simulations (100 runs of 33 years for each value of mean
maximum spring temperature). Results are based on the
observed relationships between spring temperatures, microcli-
matic heterogeneity, phenological synchrony, and acorn pro-
duction. The overall mean acorn crop was constrained to a
constant value across each set of runs. The observed value in
the population is plotted as a ‘‘þ.’’

January 2015 189PHENOLOGICAL SYNCHRONY AND MASTING



appropriately sized acorn crop is currently known

(Pearse et al. 2014).

No significant temporal changes in mean maximum

spring temperatures have been observed at our study site

since records were first kept in the late 1930s (correlation

between mean maximum temperature 1 March–30 April

and year for 1939–2012, r¼�0.01, P¼ 0.90) or over the

33-yr period from 1980–2012 for which we have acorn

production data (r ¼ �0.10, P ¼ 0.57). The potential

effects of future climate change can be estimated,

however, by means of computer simulations. Results

demonstrate how the mechanism proposed here results

in variability in annual acorn production (masting)

decreasing as mean maximum temperatures increase,

independent of their effects on overall productivity.

Whether long-distance gene flow, as characterizes many

wind-pollinated tree populations, might mitigate these

effects (Kremer et al. 2012) remains to be seen,

particularly given the variability in pollen flow observed

in different populations of Q. lobata (Sork et al. 2002a,

Abraham et al. 2011) and the potential for climate

change to drive regional extinctions of this species

(Kueppers et al. 2005, Sork et al. 2010).

Whether a similar mechanism integrating environ-

mental conditions during flowering and subsequent seed

production might be important in other masting systems

remains to be determined. Studies in Spain attempting to

relate pollen availability to acorn production in Q. ilex

have yielded variable results (Garcı́a-Mozo et al. 2007,

Fernández-Martı́nez et al. 2012), in part due to the

difficulties of measuring pollen availability; no study to

date has quantified pollen actually available to individ-

ual trees. It is, however, probable that factors beyond

those considered here will be involved in the mechanisms

driving masting behavior in other systems. In some cases

these effects may be through their influence on

phenology and pollen availability in ways parallel to

those proposed here; for example, rainfall might affect

phenological synchrony, and thus annual differences in

pollen variability, in some systems rather than temper-

ature. In other cases, however, completely different

factors are likely to be involved. For example, water

stress during the summer affecting seed maturation

rather than factors related to pollen availability in the

spring appears to be particularly important in several

Spanish oak species (Espelta et al. 2008, Pérez-Ramos et

al. 2010, Koenig et al. 2013), and it is likely that resource

depletion in mast years often will affect seed production

in ways that might either be in addition to or confound

the effects of pollen availability (Satake and Iwasa 2000,

2002, Crone et al. 2009, Ichie and Nakagawa 2013,

Miyazaki 2013). In the population of valley oaks studied

here, experimental work has shown that the majority of

female flowers are aborted even in the presence of excess

pollen, consistent with resource depletion playing a role

beyond that of pollen limitation (Pearse et al. 2015).

Resource depletion is particularly likely to be important

in alternate-bearing systems (Crawley and Long 1995,

Crone 2013) and, more generally, systems in which there

is temporal autocorrelation of seed crop size.

Although it is unlikely to be important in all systems,

we predict that a mechanism based on phenological

PLATE 1. Valley oak savanna at Hastings Reservation in Monterey County, California, USA, in the spring. Photo by W. D.
Koenig.
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synchrony driven by environmental heterogeneity may

be important in determining variable seed production in

many species in which conditions during the flowering

period correlate with subsequent seed production, as is

frequently the case (Koenig and Knops 2014). To the

extent that phenological synchrony is involved in

determining variable seed production, climate change

is likely to have significant effects on patterns of seed

production in other masting systems. Whether or not

such changes alter overall productivity, they are likely to

affect both the magnitude and frequency of resource

pulses generated by masting events and thus have

important ecosystem consequences.
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Garcı́a-Mozo, H., M. T. Gómez-Casero, E. Domı́nguez, and C.
Galán. 2007. Influence of pollen emission and weather-
related factors on variations in holm-oak (Quercus ilex subsp.
ballota) acorn production. Environmental and Experimental
Botany 61:35–40.

Griffin, J. R., and W. B. Critchfield. 1972. The distribution of
forest trees in California. USDA Forest Service Research
Paper PSW-82. Pacific Southwest Forest and Range Exper-
iment Station, Berkeley, California, USA.

Ichie, T., and M. Nakagawa. 2013. Dynamics of mineral
nutrient storage for mast reproduction in the tropical
emergent tree Dryobalanops aromatica. Ecological Research
28:151–158.

Ims, R. A. 1990. The ecology and evolution of reproductive
synchrony. Trends in Ecology and Evolution 5:135–140.

Janzen, D. H. 1971. Seed predation by animals. Annual Review
of Ecology and Systematics 2:465–492.

Jedrzejewska, B., and W. Jedrzejewska. 1998. Predation in
vertebrate communities: the Bialowieza primeval forest as a
case study. Springer-Verlag, Berlin, Germany.

Jones, C. G., R. S. Ostfeld, M. P. Richard, E. M. Schauber, and
J. O. Wolff. 1998. Chain reactions linking acorns to gypsy
moth outbreaks and Lyme disease risk. Science 279:1023–
1026.

Kelly, D. 1994. The evolutionary ecology of mast seeding.
Trends in Ecology and Evolution 9:465–470.

Kelly, D., et al. 2013. Of mast and mean: differential
temperature cue makes mast seeding insensitive to climate
change. Ecology Letters 16:90–98.

Kelly, D., D. E. Hart, and R. B. Allen. 2001. Evaluating the
wind pollination benefits of mast seeding. Ecology 82:117–
126.

Kelly, D., W. D. Koenig, and A. M. Liebhold. 2008. An
intercontinental comparison of the dynamic behavior of mast
seeding communities. Population Ecology 50:329–342.

Kelly, D., and V. L. Sork. 2002. Mast seeding in perennial
plants: why, how, where? Annual Review of Ecology and
Systematics 33:427–447.

Koenig, W. D., and M. V. Ashley. 2003. Is pollen limited? The
answer is blowin’ in the wind. Trends in Ecology and
Evolution 18:157–159.

Koenig, W. D., M. Dı́az, F. Pulido, R. Alejano, E. Beamonte,
and J. M. H. Knops. 2013. Acorn production patterns. Pages
181–209 in P. Campos, L. Huntsinger, J. L. Oviedo, P. F.
Starrs. M. Dı́az, R. B. Standiford, and G. Montero, editors.
Mediterranean oak woodland working landscapes: dehesas
of Spain and ranchlands of California. Springer Landscape
Series. Volume 16. Springer, New York, New York, USA.

Koenig, W. D., K. A. Funk, T. S. Kraft, W. J. Carmen, B. C.
Barringer, and J. M. H. Knops. 2012. Stabilizing selection for
within-season flowering phenology confirms pollen limitation
in a wind-pollinated tree. Journal of Ecology 100:758–763.

Koenig, W. D., D. Kelly, V. L. Sork, R. P. Duncan, J. S.
Elkinton, M. S. Peltonen, and R. D. Westfall. 2003.
Dissecting components of population-level variation in seed
production and the evolution of masting behavior. Oikos
102:581–591.

Koenig, W. D., and J. M. H. Knops. 2000. Patterns of annual
seed production by northern hemisphere trees: a global
perspective. American Naturalist 155:59–69.

January 2015 191PHENOLOGICAL SYNCHRONY AND MASTING



Koenig, W. D., and J. M. H. Knops. 2001. Seed-crop size and
eruptions of North American boreal seed-eating birds.
Journal of Animal Ecology 70:609–620.

Koenig, W. D., and J. M. H. Knops. 2014. Environmental
correlates of acorn production by four species of Minnesota
oaks. Population Ecology 56:63–71.

Koenig, W. D., J. M. H. Knops, W. J. Carmen, M. T.
Stanback, and R. L. Mumme. 1994a. Estimating acorn crops
using visual surveys. Canadian Journal of Forest Research
24:2105–2112.

Koenig, W. D., J. M. H. Knops, W. J. Carmen, M. T.
Stanback, and R. L. Mumme. 1996. Acorn production by
oaks in central coastal California: influence of weather at
three levels. Canadian Journal of Forest Research 26:1677–
1683.

Koenig, W. D., R. L. Mumme, W. J. Carmen, and M. T.
Stanback. 1994b. Acorn production by oaks in central
coastal California: variation in and among years. Ecology
75:99–109.

Kremer, A., et al. 2012. Long-distance gene flow and
adaptation of forest trees to rapid climate change. Ecology
Letters 15:378–392.

Kueppers, L. M., M. A. Snyder, L. C. Sloan, E. S. Zavaleta,
and B. Fulfrost. 2005. Modeled regional climate change and
California endemic oak ranges. Proceedings of the National
Academy of Sciences USA 102:16281–16286.

Lewontin, R. C. 1966. On the measurement of relative
variability. Systematic Zoology 15:141–142.

McShea, W. J. 2000. The influence of acorn crops on annual
variation in rodent and bird populations. Ecology 81:228–
238.

Meehl, G. A., and C. Tebaldi. 2004. More intense, more
frequent, and longer lasting heat waves in the 21st century.
Science 305:994–997.

Miyazaki, Y. 2013. Dynamics of internal carbon resources
during masting behavior in trees. Ecological Research 28:
143–150.

Moreira, X., L. Abdala-Roberts, Y. B. Linhart, and K. A.
Mooney. 2014. Masting promotes individual- and popula-
tion-level reproduction by increasing pollination efficiency.
Ecology 95:801–807.

Ostfeld, R. S. 1997. The ecology of Lyme-disease risk.
American Scientist 85:338–346.

Ostfeld, R. S., and F. Keesing. 2000. Pulsed resources and
community dynamics of consumers in terrestrial ecosystems.
Trends in Ecology and Evolution 15:232–237.

Pearse, I., W. D. Koenig, and J. M. H. Knops. 2014. Cues
versus proximate drivers: testing the mechanism behind
masting behavior. Oikos 123:179–184.

Pearse, I. S., W. D. Koenig, K. A. Funk, and M. B. Pesendorfer.
2015. Pollen limitation and flower abortion in a wind-
pollinated, masting tree. Ecology, in press.
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(Quercus lobata Neé). Pages 427–439 in R. B. Standiford,
D. D. McCreary, and K. L. Purcell, technical coordinators.
Proceedings of the Fifth Symposium on Oak Woodlands:
Oaks in California’s Changing Landscape. General Technical
Report PSW-GTR-184, Pacific Southwest Forest and Range
Experiment Station, Berkeley, California, USA.

Suggitt, A. J., P. K. Gillingham, J. K. Hill, B. Huntley, W. E.
Kunin, D. B. Roy, and C. D. Thomas. 2011. Habitat
microclimates drive fine-scale variation in extreme tempera-
tures. Oikos 120:1–8.

Tyler, C. M., B. Kuhn, and F. W. Davis. 2006. Demography
and recruitment limitations of three oak species in California.
Quarterly Review of Biology 81:127–152.

Vanwalleghem, T., and R. K. Meentemeyer. 2009. Predicting
forest microclimate in heterogeneous landscapes. Ecosystems
12:1158–1172.

Whitehead, D. R. 1983. Wind pollination: some ecological and
evolutionary perspectives. Pages 97–108 in L. Real, editor.
Pollination biology. Academic Press, New York, New York,
USA.

SUPPLEMENTAL MATERIAL

Ecological Archives

The Supplement is available online: http://dx.doi.org/10.1890/14-0819.1.sm

WALTER D. KOENIG ET AL.192 Ecology, Vol. 96, No. 1

http://dx.doi.org/10.1890/14-0819.1.sm


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00083
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


