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Highlights
Climate variability is cataloged using cli-
mate indices that ecologists rely on to
study phenology, migration, and popula-
tion dynamics.

Climate dipoles are a common charac-
teristic of climate variability that emerge
in terrestrial and marine systems as con-
trasting patterns in anomalies of temper-
ature or precipitation appearing at two
different geographic locations at the
same time.
Ecological processes, such as migration and phenology, are strongly influenced
by climate variability. Studying these processes often relies on associating ob-
servations of animals and plantswith climate indices, such as the El Niño–Southern
Oscillation (ENSO). A common characteristic of climate indices is the simultaneous
emergence of opposite extremes of temperature and precipitation across continen-
tal scales, known as climate dipoles. The role of climate dipoles in shaping ecolog-
ical and evolutionary processes has been largely overlooked. We review emerging
evidence that climate dipoles can entrain species dynamics and offer a framework
for identifying ecological dipoles using broad-scale biological data. Given future
changes in climatic and atmospheric processes, climate and ecological dipoles
are likely to shift in their intensity, distribution, and timing.
Climate dipoles have the potential to en-
train continent-wide processes ranging
from bird migration to plant reproduction
and produce ecological dipoles.

Ecological dipoles can be identified by
applying approaches of space–time
analysis to biological and climatological
observations collected at continental
scales.

Given the alteredpatterns of atmospheric
processes, increasing synchrony of
weather, and land-use-driven changes
in climate, it is likely that climate and eco-
logical dipoles will shift dramatically in the
future.
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Climate Variability Mediates Ecological Processes across Time and Space
Many local ecological processes are entrained by environmental drivers operating over broad
geographic scales [1–3]. Climate variability (see Glossary) is one such driver that influences
and synchronizes a diversity of biological phenomena ranging from plant reproduction to animal
migration and is distinct from the impacts of climate change that occur over longer time periods
[4–7]. As Earth rapidly approaches a new planetary state characterized by warmer temperatures
and more frequent extreme events [8–10], there is a mounting urgency to better understand the
effects of climate variability on plant and animal populations across time and space. However,
unpacking the biological consequences of climate variability is a challenging endeavor as it
requires the study of coupled fluctuations in both climate and ecological responses over
geographic extents ranging from local field studies to entire continents.

While climate change generally occurs over decades or centuries and weather varies on a daily
basis, other fluctuations in temperature and precipitation operate on multiannual time scales.
These regular fluctuations are a natural form of climate variability and are individually known as
modes. Climatologists catalog only themost highly structured of thesemodes as climate indices
representing a single time series that explains the largest fraction of climate variability in a particular
season. These indices describe fluctuating differences in an atmospheric parameter (e.g., air pres-
sure, air or sea temperatures, rainfall) between widely separated regions at interannual to decadal
timescales. For example, theNorth AtlanticOscillation (NAO) [11] describes a recurring alterna-
tion in sea level pressure between Iceland and the central North Atlantic. Similarly, the ENSO [12],
in the equatorial Pacific, captures fluctuations of sea surface temperature and pressure that alter-
nate every few years between warm (El Niño) and cool (La Niña) phases. Importantly, the NAO, the
ENSO, and other indices vary over a broad range of time scales, and their fluctuations can impact
global, regional, and local climate conditions.

Climate indices are an essential tool for advancing theories in migration, phenology, and popula-
tion dynamics [5,6,13]. These indices are useful because they are easily obtainable,
440 Trends in Ecology & Evolution, May 2020, Vol. 35, No. 5 https://doi.org/10.1016/j.tree.2020.01.010

© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.tree.2020.01.010
https://doi.org/10.1016/j.tree.2020.01.010
https://doi.org/10.1016/j.tree.2020.01.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tree.2020.01.010&domain=pdf


6Earth System Science Interdisciplinary
Center, University of Maryland, College
Park, MD, USA
7School of Renewable Natural Resources,
University of Arizona, Tucson, AZ, USA
8Lab of Ornithology, Cornell University,
Ithaca, NY 14850, USA

*Correspondence:
bzuckerberg@wisc.edu (B. Zuckerberg).

Trends in Ecology & Evolution
straightforward to interpret (with standardized values representing positive and negative phases),
span multiple decades, and represent a simplified composite of weather. Ecologists associate
climate indices with observations of plant and animal populations (e.g., abundance, survival,
reproduction) collected over periods of time (Figure 1, Key Figure). For example, long-term
records of migrating birds at a single banding station may reveal earlier spring arrival during
warmer years associated with the positive phases of a specific mode of climate variability, such
as the NAO [14]. The NAO and ENSO are well-documented drivers in classic examples of popu-
lation cycling in snowshoe hare (Lepus americanus) and lynx (Lynx canadensis) [15,16] as well as
porcupines (Erethizon dorsatum) [17], interactions between wolves (Canis lupus) and their prey
[18,19], bird competition [20] and reproduction [21,22], amphibian survival rates [23], disease
emergence [24,25], and flower and seed production in both temperate and tropical systems
[26–28]. Likewise, in marine systems, the NAO and ENSO affect fluctuations in zooplankton
numbers [29], fish growth and survival [30], and ecosystem productivity [31]. Many of these
studies focus on time series of observations for a single population, often collected over decades
to capture the full range of variability in the climate index and identify any time lags imposed by the
direct and indirect pathways by which a species might respond to climate variability.

A distinct means by which climate variability affects multiyear ecological responses is through the
synchronization of multiple populations through time and space, a phenomenon known as
Key Figure
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Figure 1. Under the scenario of a species that favors warm climate conditions, the species would respond favorably
(increased survival, higher abundance) to warm conditions and negatively to cold conditions. Time-series models seek to
capture ecological responses at single sites over time (yellow or orange or green). At multiple sites (i.e., orange and green),
patterns of warm (t1) and cold (t2) anomalies would synchronize changes in the ecological responses among these disjunct
populations (spatial synchrony). It is only by collecting data at multiple sites across continental scales (yellow, orange, and
green) that we would be able to capture asynchronous patterns in species’ responses to climate dipoles over time (yellow
vs. orange and green).
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Glossary
Atlantic Multidecadal Oscillation
(AMO): a multidecadal climate cycle
with an estimated period of 60–80 years
based on sea surface temperatures in
the North Atlantic Ocean.
Climate change: trends in average
climate that persist for several decades
or longer.
Climate dipole: climatic pattern of
opposite polarity appearing at two
different locations at the same time that
can emerge and persist over different
timescales.
Climate indices: a calculated value
that can be used to describe the state of
and changes in the climate system, often
over multiannual timescales.
Climate variability: shifts in the state or
organization of the global climate at
timescales ranging from seasonal to
multidecadal.
Ecological dipole: fluctuations in
ecological responses (e.g., abundance,
survival, reproduction) of opposite
polarity (antisynchronized) in populations
that are separated by large geographic
distances, often at continental scales.
El Niño–Southern Oscillation
(ENSO): a climate pattern originating in
the equatorial Pacific sector
characterized by fluctuations of sea
surface temperature and pressure that
alternate every few years between warm
(El Niño) and cool (La Niña) phases.
Empirical orthogonal function
(EOF): an analytical approach used by
climatologists to study possible spatial
patterns of climate variability and how
they change with time; similar to
performing a PCA except that the EOF
method finds both time series and
spatial patterns.
IndianOcean Dipole (IOD): a coupled
ocean–atmosphere phenomenon
based on differences in sea surface
temperatures between the Arabian Sea
(western pole) and the eastern Indian
Ocean (eastern pole).
Macrosystems ecology: the study of
diverse ecological phenomena at the
scale of regions to continents and their
interactions with phenomena at other
scales.
Mode: a unique and identifiable form of
climate variability.
Moran effect: the phenomenon
whereby spatial synchrony in population
fluctuations is driven by corresponding
synchrony in some environmental driver.
North Atlantic Oscillation (NAO): a
seesaw of sea level pressure between
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spatial synchrony (Figure 1). Although several factors can potentially drive spatial synchrony
[32], one of the most potent and pervasive is the dependence of ecological processes on climate
variability [33]. Such dependence, known as the Moran effect [34], is invariably important as a
consequence of strongly synchronized fluctuations in both rainfall and temperature across the
Earth [35]. A species that prefers warm conditions, for example, is likely to show increases in
abundance or survival across multiple populations when favorable regional conditions persist,
and vice versa (Figure 1). Driven partially or largely by the Moran effect, synchronized changes
in populations separated by hundreds to thousands of kilometers occur in plant growth and re-
production [36–38] and in insect herbivores, fishes, birds, mammals, and even human pathogens
[32]. Spatial synchrony typically decays with distance, either because patterns of fluctuation be-
come increasingly dissimilar with distance in nonperiodic populations or because of phase diver-
gence with distance in populations that fluctuate cyclically; eventually, populations far enough
apart are expected to exhibit a complete lack of spatial synchrony. At continental scales, how-
ever, climate variability can manifest itself as a climate dipole [39] – contrasting patterns in tem-
perature or precipitation anomalies appearing at two different geographic locations at the same
time – that has the potential to enforce negative correlations (antisynchrony) [40] between popu-
lations separated by thousands of kilometers (Figure 1). Climate dipoles play a potentially impor-
tant role in forming complex geographic patterns of population synchrony that are not simply
related to distance and are likely to be critical components in the geography of spatial synchrony
[41].

Here, we review the concept of climate dipoles as important drivers of animal and plant popula-
tions. We introduce the concept of the ‘ecological dipole’ as the relationship between an eco-
logical process or pattern largely driven by the emergence and regularity of climate dipoles at
continental scales. Our goals are to: (i) review empirical evidence on the existence of ecological
dipoles; (ii) present an analytical framework for detecting dipoles; and (iii) discuss how climate
change, climate variability, and widespread land-use change might alter ecological dipoles in
the future.

Evidence of Climate and Ecological Dipoles
Modes of climate variability often produce teleconnections that reflect patterns in climatic and
environmental phenomena that regularly appear in regions spanning entire hemispheres, and in
some cases, the world [42,43] (Figure 2A). For example, the NAO drives changes in sea ice extent
and tundra productivity across the Arctic [44] as well as the occurrence and magnitude of wind-
storms across Northern Europe [45,46]. El Niño promotes drought in the Amazon basin,
Australia, and the Sahel, but reduces drought in eastern Africa [12,43,47]. At continental scales,
the ENSO interacts with the mid-latitude storm track to produce a north–south dipole in winter
precipitation across North America where positive values of the ENSO index, El Niño events,
are associated with higher rainfall across the southern USA and concurrent drought conditions
in the Pacific Northwest (Figure 2B); La Niña conditions produce the opposite pattern [48]. At de-
cadal timescales, the strength and geography of this precipitation dipole can change due to inter-
actions with other modes, such as the Pacific Decadal Oscillation (PDO) or Atlantic
Multidecadal Oscillation (AMO), with significant impacts on drought, forest fires, and snow-
pack [49–51].

A somewhat lesser-known example is the Indian Ocean Dipole (IOD), an aperiodic pulsing of
sea surface temperatures that produces warmer ocean temperatures in the western Indian
Ocean and corresponding cooler waters in the east [52,53]. The IOD has far-reaching impacts
on global climate [54] and is associated with a strong temperature dipole across Australia
(Figure 2C) and catastrophic bushfires in the southeast [55]. Teleconnections entrain the
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Iceland and the North Atlantic High and
attendant shifts in the overlying storm
track that impact Europe and the
eastern USA.
Pacific Decadal Oscillation (PDO): a
decadal climate pattern based on
anomalies of sea surface temperature in
the North Pacific basin. Positive values of
the PDO index correspond with cold sea
surface temperatures in the central and
western North Pacific and warm sea
surface temperatures along the west
coast of North America.
Spatial synchrony: coincident
changes in the abundance or other time-
varying characteristics of geographically
disjunct populations.
Teleconnections: recurring, long-
distance patterns of climate anomalies
related to each other over large
distances.
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magnitude and regularity of environmental phenomena across the globe, but it is at the scale of
ocean basins and continents where climate dipoles and their associated ecological impacts are
most conspicuous.

Some of the earliest evidence of dipoles influencing species and communities comes from marine
systems where irregular oscillations of sea surface temperatures can occur over days to months.
For example, the seesaw dynamic in sea surface temperatures associated with the IOD (Figure 3)
influences the location of the Antarctic polar front – a northern boundary of cold Antarctic waters
that sustains large numbers of zooplankton and fish. Positive phasing of the IOD and anomalously
warm sea surface temperatures push the polar front poleward and force king penguins
(Aptenodytes patagonicus) to travel farther and dive deeper for food, leading to reduced breeding
success; an extreme positive IOD event in 1997 led to penguin population declines of over 30% [56].

In the South China Sea, a dipole of eddies (circular whirlpools of water, counter to the main
current) emerges during the monsoon season that substantially constrains microbial distributions
and community structure [57]; large differences in microbial diversity occur within and between
this dipole of eddies due to the vertical and horizontal mixing of different water temperatures.
White sharks (Carcharodon carcharias) in the Gulf Stream use the warm temperatures associated
with the interiors of eddies to dive deeply and feed on mesopelagic prey [58]. Consequently, the
warmwater temperatures formed as part of thesemarine dipoles make preymore accessible and
energetically profitable for pelagic predators, such as white sharks, by reducing the physiological
costs of thermoregulation in cold water [58].

As in marine systems, dipoles of temperature and rainfall emerge across continents over years and
decades with the potential to create ecological dipoles (Table 1). For example, mast seeding, or
masting, is the synchronous and highly variable production of seed over time in a population of pe-
rennial plants [59–62]. Formany temperate and boreal tree species, ‘mast years’ are dramatic, with
tree branches visibly laden by reproductive structures (e.g., cones, acorns) and leading to a pulse
of resources that ripples through forested ecosystems [63–65]. Temperature and rainfall are impor-
tant cues for masting and can synchronize seed production for a variety of tree species across
broad geographic regions [37,38,66,67]. Spatial synchrony in masting is well documented at re-
gional scales (b2000 km) and the NAO appears to have been an important predictor of masting
in beech (Fagus sylvatica) and spruce (Picea abies) in Northern Europe for the past 50+ years
[68]. Understanding the role of climate dipoles on masting is challenging due to the need to collect
seed production data across multiple populations spanning continental scales, but emerging evi-
dence suggests that asynchronous masting events may occur at distances N5000 km and are
closely associated with continental dipoles in summer temperatures (Box 1).

Likemasting, birdmigration is a visible ecological phenomenon in the natural world and is strongly
influenced by climate variability [69,70]. Bird irruptions are a form of irregular migration where, in
some years, large numbers of individuals appear beyond their normal wintering or breeding areas
[69–72]. These irruptions are thought to be a response to resource failure (lack of seed) and flee-
ing adverse climate conditions [73,74]. Pine siskins (Spinus pinus) are one of a suite of boreal
breeding species that irrupt with varying regularity across North America. Interestingly, pine siskin
irruptions demonstrate dipole-like patterns spanning a north–south and west–east gradient
across the continent [75] (Figure 4A). The north–south irruption dipole is characterized by large,
multidecadal irruptions extending south of the boreal forest where siskins typically breed and
are strongly associated with wet conditions in the boreal forest and dry conditions in the southerly
Appalachians. A west–east dipole of siskin irruption (Figure 4B) exhibits biennial fluctuations be-
tween western and eastern regions of the boreal forest in response to precipitation and
Trends in Ecology & Evolution, May 2020, Vol. 35, No. 5 443
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Figure 2. Global Teleconnections and Continental Climate Dipoles. Top panel (A) shows the global distribution of regional atmospheric conditions and their
associated drivers; the length of the bar is proportional to the magnitude of correlation with the mode of climate variability. Adapted from [43]. Bottom panels are
examples of climate dipoles at continental scales shown by correlations between (B) gridded precipitation (January–March) and the multivariate El Niño–Southern
Oscillation index and (C) gridded air temperature (January–March) and the Dipole Mode Index associated with the Indian Ocean Dipole.
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Figure 3. Indian Ocean Dipole. The Indian Ocean Dipole represents a seesaw dynamic in sea surface temperatures with
wide-ranging ecological and environmental implications. During the positive phase, warmer-than-average water tempera-
tures in the western Indian Ocean bring heavy rains to East Africa and India and colder-than-average waters bring drought
to Southeast Asia. In the negative phase, ocean and monsoonal conditions reverse. Illustration by E. Paul Oberlander, with
permission from the Woods Hole Oceanographic Institution.

Table 1. Studies of Climate Variability on Ecological Processes with the Potential for Ecological Dipoles

Region Climate mode Response Scale Refs

High Arctic Tropical/Northern Hemisphere pattern Survival of Sabine’s gulls (Xema sabini) Regional [125]

Spain to Turkey Climate correlation Tree growth (Pinus sp.) Regional [126]

Kenya IOD Malaria risk Regional [127]

Western Australia Climate correlation Growth in blue grouper (Achoerodus gouldii) Regional [30]

North America Climate correlation Boreal bird irruptions Continental [75]

Gulf of California, Mexico Mesoscale cyclone–anticyclone eddies Phytoplankton Regional [29]

North America Climate correlation Masting in white spruce (Picea glauca) Continental (J.M. LaMontagne,
unpublished)

Northern Europe NAO Masting in European beech (Fagus sylvatica)
and Norway spruce (Picea abies)

Continental [68]

North America Climate correlation Waterbird populations Continental [128]
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Box 1. Ecological Dipoles in Mast Seeding at a Continental Scale

Mast seeding is defined as the synchronous production of highly variable seed crops by a population of perennial plants
over time [62]. A ‘mast event’ occurs when seed production is very high, often orders of magnitude greater than in other
years [77]. Using data from a continental database on plant seed production [67], mast seeding in white spruce across
North America displays an ecological dipole with potential connections to climatic patterns (Figure I) (J.M. LaMontagne,
unpublished). It is hypothesized that anomalously warm conditions, captured as the temperature difference between
the two previous summers (known as the ΔT model), is a strong predictor of mast seeding in some species [123].

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. An Ecological Dipole of Mast Seeding in White Spruce. During a mast event, the crowns of many white
spruce trees in a population are covered in cones (A). At sites spanning N5200 kmacrossNorth America, an ecological dipole
in mast seed can be observed between populations in the east (Quebec; red line) and the west (Alaska and Yukon; blue line)
(B). This dipole is apparent for 2006 (t), when trees in eastern North America hadmast events but sites to the west did not (C).
The difference in mean July temperature between the years 2005 (t - 1) and 2004 (t - 2) reveals that sites in eastern North
America were much warmer in 2005 than in 2004 (D), leading to the observed widespread 2006 mast events in the east.

Trends in Ecology & Evolution
temperature anomalies at multiyear time lags (Figure 4C,D). These time lags indicate a recurring
climate-induced failure of food resources, presumably the boom and bust of conifer masting
(Box 1) [76,77]. Importantly, these irruptions represent an ecological dipole where the direct
and indirect effects of climate dipoles pushed and pulled irruptive bird movements across the
continent at biennial to decadal scales.

Although ecological dipoles may be a common, albeit understudied, characteristic of contempo-
rary plant and animal dynamics, climate dipoles can persist over millennia with the potential to in-
fluence evolutionary processes and themaintenance of entire biomes [78–80]. Glacial–interglacial
variability is characterized by robust cooling and warming of the Earth’s climate and, in many
cases, the formation of stable climate dipoles. For example, the north–south winter precipitation
dipole of western North America discussed earlier (Figure 2B) can persist across multidecadal to
century timescales, but also switched signs and geography during the last deglaciation [81]. Sim-
ilarly, in tropical South America, Quaternary climate change produced an east–west precipitation
446 Trends in Ecology & Evolution, May 2020, Vol. 35, No. 5
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Figure 4. Ecological Dipoles and Climate Drivers of Boreal Bird Irruptions. West–east irruption mode of pine siskin
irruption and associated climate drivers. (A) West–east irruptionmode (red line) is the time series of pine siskin counts over the
period of record (1989–2012). The blue line is a statistical model of the west–east irruption mode constructed from climate
indices. (B) Spatial pattern of the west–east irruption mode of pine siskin counts with red areas showing high counts and
blue areas low counts. Correlation of west–east irruption mode with (C) summer (June through August) precipitation
anomalies and (D) temperature anomalies from 2 years prior to irruption. Adapted from [75]; copyright 2015 National
Academy of Sciences.
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dipole associated with Earth’s orbital cycles (~20 000-year cyclicity) that resulted in periods of
high precipitation that persisted for centuries to millennia [78].

Over the past 250 000 years, the South American monsoon (SAM) and the ENSO have
interacted to produce a dipole in rainfall between western (wetter) and eastern (drier) Amazonia;
this dipole is thought to be essential to the stability of regions serving as tropical refugia for species
during periods of rapid climate change and maintaining patterns of biodiversity [78]. Similar to the
push and pull of contemporary climate dipoles, many of the teleconnections we have discussed
may have provided opportunities for human migration and evolution. For example, shifts in the
NAO and associated droughts may have contributed to punctuated periods of human migration,
conflict, and the eventual collapse of the Roman Empire [82]. Over thousands of years, there is
compelling evidence that early populations of Homo sapiens were similarly influenced by
continent-wide dipoles in rainfall that created alternating opportunities for human migration out of
Africa [83]. Because patterns of climate variability persist across decades and centuries, the
seesaw of climate dipoles offers the potential to affect evolutionary dynamics and patterns of
biodiversity.

Approaches for Uncovering Ecological Dipoles
Identification of ecological dipoles relies on a suite of analytical tools rarely employed by ecolo-
gists. As ecological networks [e.g., the National Ecological Observatory Network (NEON)] [84]
and citizen science databases (e.g., eBird) [85] become more established and spatially
Trends in Ecology & Evolution, May 2020, Vol. 35, No. 5 447
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distributed, their structural organization enables the use of statistical approaches that are well de-
veloped for space–time discovery in atmospheric and oceanic data. There are a suite of recent
methods for assessing the geography of spatial synchrony, such as spectral methods [86], syn-
chrony networks [41], spatial regression [87], and orthogonal functions (see later) that are amena-
ble for coupled pattern discovery. A shared characteristic of these approaches is the
decomposition of ecological data and synchronized climate drivers, over space and time. Impor-
tantly, instead of depending on existing climate indices developed to explain atmospheric or oce-
anic variability, ecologists can use these methods to find prominent patterns in ecological time
series over geographic scales and then seek the climate drivers that explain maximal ecological
variance (Box 2).

A common approach used by climatologists to detect space–time modes of variability and
climate dipoles is empirical orthogonal function (EOF) analysis [88]. In this application, a
set of climatological observations at m sites, each with record length n, are assembled into a
(n × m) matrix and the EOFs are the eigenvectors of the associated (m × m) spatial covariance
or correlation matrix. The EOFs are thus spatial ‘loading’ patterns onto which the data are
projected to define a set of orthogonal time series ordered to successively maximize variance.
EOF analysis has a rich application history in ecology and geography, although it is most often
Box 2. A Method for Dipole Discovery

The climate science community diagnoses modes of variability from gridded climate data (time series at multiple grid points) using methods like EOF analysis [88,89]. EOF
analysis yields a climate mode’s spatial pattern (the eigenvector of the spatial covariance matrix) and time series index (the projection of the data onto the eigenvector) as
illustrated in Figure IA–C.

An ecological time series of interest (e.g., bird observations from citizen scientists) may be correlated with such a climate index, but not optimally (Figure ID). With the
evolution of citizen science and ecological observatory networks collecting biological data over multiple sites across time, the analysis approach can be inverted to first
discover the ecological pattern of interest via EOF analysis or PCA (Figure IE–G). Correlating the time-series index of the ecological response with a gridded climate time
series yields a ‘heterogeneous correlation map’ informing a simple climate index (e.g., mean red-region temperature minus mean blue-region temperature), which may
be better correlated with the ecological response (Figure IH,I).

Climate and ecological dipoles can be more directly discovered via methods combining the two data sets, simultaneously yielding the pair of patterns (maps and time
series) that optimize correlation or covariance. Examples of this class of methods include combined PCA, canonical correlation analysis, and maximum covariance anal-
ysis [124]. An advantage of such an approach is using the ecological data to identify unknown climate dipoles given that existing climate indices may be inadequate for
explaining the ecological pattern. Like any climate–ecological correlation, one needs to be careful about assuming causation, and the discovery of an ecological dipole
should be followed by a more in-depth exploration of plausibility and mechanisms.
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Figure I. Schematic of Process for Detecting Climate and Ecological Dipoles. Empirical orthogonal function (EOF) analysis yields a climate pattern (A–C), which
is then correlated with an ecological response (D). Alternatively, the ecological pattern can first be found via principal component analysis (PCA) (E–G) and then its
correlation with climate (H) can yield a more refined view of the atmospheric driver (I).
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applied in a different manner from that described earlier and is also referred to as principal com-
ponent analysis (PCA) [89]. In a conventional PCA, ecologists use sampling locations as the
data elements and a suite of highly correlated fields or descriptors as the variables. A climate
science-style EOF approach inverts this concept, such that the data elements are sampling
times and the variables are ecological response (e.g., species occurrence, abundance, sur-
vival) measured at multiple sites. While this PCA variant is commonplace in climate science,
its application for ecological analysis is rare. Organized patterns, like dipoles, emerge from
EOF analysis because the linear combinations of variables that maximize variance naturally ex-
ploit the substantial spatial autocorrelation present in environmental fields. It is possible to also
incorporate temporal autocorrelation explicitly with extended EOFmethods [90] such as Hilbert
empirical orthogonal function analysis [91] that are useful for detecting modes that propagate
over time and space [92].

Once dipoles in ecological observations are detected, there are two main approaches to find the
associated climate drivers: (i) map the correlation between the ecological response and gridded
climate time series; or (ii) leverage more advanced techniques for coupled pattern discovery in-
volving simultaneous analysis of the ecological and climate data (Box 2). In the first approach,
sometimes called single-field PCA [93], one can assess the temporal correlation between each
ecological principal component time series and an atmospheric or oceanic space–time array
over multiple time lags. Multiple climate arrays can be incorporated, including precipitation,
wind, and sea surface temperature. The resulting correlations can be tested for local and ‘field’
statistical significance [94] and evaluated for their plausibility as drivers of ecological variability.
Simple indices can then be developed based on the correlation maps and described as ecolog-
ical dipoles, analogous to how the pressure difference between stations in Iceland and Portugal is
used to define an index of the NAO. This comprehensive and brute-force approach yields results
that are generally straightforward to interpret, and we have found it fruitful for uncovering climate
drivers of a broad array of phenomena ranging from lake temperatures to bird migration and frost
timing [75,95,96].

The second approach, analyzing the climate and ecological data simultaneously, draws on
methods for coupled pattern discovery [97]. The question here is no longer what mode explains
themost variance in either ecology or climate, but rather what mode explains themost covariation
between ecological responses and climate. Typically the two data sets are processed so that
each has the same record length n, but they are measured at different numbers of sites, m and
p. As one example of this approach, maximum covariance analysis uses a singular value decom-
position of the associated m × p covariance matrix to identify the two patterns (one from each
field) that are most strongly correlated (or covarying). Both of the approaches can be deployed
by ecologists to identify ecological dipoles.

A Future of Shifting Dipoles
Atmospheric circulation patterns are changing due to modern climate change. There have been
documented changes in spring and summer rainfall and dipole precipitation patterns across
North America [98], poleward shifts in mid-latitude jet streams and storm tracks [99–101], alter-
nations in the origination and magnitude of El Niño from the eastern to the western Pacific [102],
and changes in the position and strength of the Arctic polar vortex [103]. Importantly, climate di-
poles and associated ecological dipoles reflect teleconnections in coupled atmospheric and oce-
anic processes occurring throughout the world. For example, climate dipoles arising in North
America result from atmospheric waves that can be traced to the tropical Pacific or Indian
Ocean [104] and even westward around the hemisphere to the North Atlantic [105]. Conse-
quently, increases in oceanic warming are important for climate dipoles on land [106] and
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Outstanding Questions
Are there are other drivers, beyond
climate variability, that could result in
the appearance of ecological dipoles?

Assuming a more comprehensive
catalog of existing climate dipoles
than currently available, and an
understanding of their stabilities in time
and space, what is the full range and
significance of associated ecological
dipoles in both the marine and the
terrestrial realm?

How might climate dipoles drive
evolutionary processes and the
persistence of biogeographic gradients
and biome boundaries?

What are the underlying mechanisms
and characteristics of species
(e.g., dispersal capabilities, density de-
pendence, distribution) and ecosystems
that aremost likely to demonstrate dipole
patterns?

Dipole detection depends on ecological
time series collected over broad
geographic and temporal extents.
What are the dimensions (e.g., number
of years, sample size) of the biological
data sets needed to detect ecological
dipoles?

How will climate and land-use change
either disrupt or introduce climate and
ecological dipoles in the future and
what might be the ecological, environ-
mental, and societal consequences?
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warming within the tropics can trigger atmospheric wave propagation [107] that can alter ecolog-
ical dipoles across mid-latitudes.

In addition to shifting modes of climate variability, surface temperatures are now more geograph-
ically coherent than they have been at any time during the past 2000 years [108], with significant
implications for ecological processes [109]. Enhanced spatial synchrony in weather patterns is a
global phenomenon resulting in record-breakingmonthly temperatures globally [110]. Intensifying
and more synchronized patterns of climate variability are associated with increased spatial syn-
chrony of tree growth patterns in conifer forests of central Siberia and Spain [111], changes in
the abundance of wintering bird populations across North America [112], and outbreaks of
gypsy moth (Lymantria dispar) defoliations [113]. The synchronization of temperature changes
is predicted to rise over the next century, but this will be strongly regional [114], and the contrast
between wet and dry regions of the Earth will only increase in magnitude and intensity [115].

Adding complexity to the dynamics of climate change, widespread changes in land use through
agricultural expansion, reforestation, and urbanization can directly alter patterns of atmospheric
circulation at continental scales [116]. For example, the conversion of North American grasslands
to forests via afforestation is expected to shift the Intertropical Convergence Zone (ITCZ) by cre-
ating an energy imbalance between the Northern and Southern Hemispheres [117]. This shift in
the ITCZ promotes drying over the southern Amazon and a subsequent decrease in productivity
and possible change in forest structure in locations far removed from the original land-cover
change. Given the altered patterns of climate variability, increasing synchrony of weather, and
land-use-driven changes in climate, it is likely that the strength and directionality of ecological di-
poles will change in the future. Understanding and predicting the consequences of climate and
land-use change on these ecological dipoles will be challenging.

Concluding Remarks and Future Perspectives
Climate variability is a critical driver of ecological and environmental processes over time and
space. Here, we present emerging evidence that the ubiquity of climate dipoles is an important
component of climate variability with the potential to push and pull population and ecosystem dy-
namics in terrestrial and marine systems. We present methods to detect ecological dipoles – and
their associated climate drivers – in an effort to open new avenues of exploration in the study of
plant and animal communities (see Outstanding Questions).

Although studies on ecological dipoles are rare, climate dipoles can influence a wide range of eco-
logical processes, such as shifts in migratory or foraging behavior, disease emergence, primary
production in terrestrial and marine systems, and altered population and evolutionary dynamics.
Fusing continent-wide observations from citizen science and observatory networks with temper-
ature and precipitation time series accentuate the value of sustained and synoptic biological ob-
servations that match the scales at which climate dipoles are manifested and will undoubtedly
uncover additional ecological consequences. Unfortunately, the observational scales of most cur-
rent ecological studies are generally narrow due to conventional field-based approaches; most
ecological observations are collected across spatial extents of less than 100 km2, are
unreplicated or infrequently repeated, and are collected for only a few years [118]. Because
these limitations have persisted for the past several decades, an expansive gulf remains between
the scales at which ecological dipoles arise and the scope of ecological observation.

Current technological advances and the growth of citizen science are contributing to the kinds of
long-term, macrogeographic data required to address the questions we highlight here. The for-
mer include advances in remote sensing and climate models while the latter includes modern
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initiatives such as eBird, iNaturalist [119], the Map of Life [120], the National Phenology Network
[121], and camera trap networks [122] that successfully enlist large numbers of people into a
geographically widespread and interconnected monitoring network that can then be coupled
with climate data. These monitoring networks will be essential for collecting broad-scale data
on population dynamics (e.g., abundance, occurrence, reproduction, disease prevalence) and
ecosystem functioning (e.g., primary productivity, eddy-covariance flux measurements) that are
potentially sensitive to climate dipoles. New theoretical fields of ecology, such asmacrosystems
ecology [2], set the stage for investigations of the role of climate variability on ecological and en-
vironmental processes over broad geographic scales. Together, these advances offer new ave-
nues to further uncover the roles that climate dipoles, teleconnections, and other large-scale
climatic phenomena play in driving ecological processes. Because climate dipoles are a likely
broad-scale driver in the geography and periodicity of ecological dipoles at continental scales,
shifting climate variability is likely to have wide-ranging impacts on species and ecosystems in
the future.
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